Search results

Search for "antibacterial" in Full Text gives 128 result(s) in Beilstein Journal of Nanotechnology.

Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli

  • Kiran Gupta,
  • R. P. Singh,
  • Ashutosh Pandey and
  • Anjana Pandey

Beilstein J. Nanotechnol. 2013, 4, 345–351, doi:10.3762/bjnano.4.40

Graphical Abstract
  • indirect optical band gap of 3.2 eV, while the rutile phase has a direct band gap of 3.06 eV and an indirect one of 3.10 eV [7]. However, crude nanoparticles are amorphous in nature, with decreased surface area, and show a fast recombination rate of electrons and holes. Finally the antibacterial activity
  • acid-catalyzed sol–gel technique. The prepared particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV–vis) and photoluminescence (PL). Furthermore, the antibacterial activity of the TiO2 and Ag-TiO2 nanoparticles were
  • killing of the bacteria investigated here. The antibacterial activity of annealed samples is slightly more than crude TiO2, because after annealing at 450 °C the amorphous phase of the nanoparticle is converted to both anatase and rutile phases, and shows an indirect band gap of 3.2 eV, which is similar
PDF
Album
Correction
Full Research Paper
Published 06 Jun 2013

Electrospinning preparation and electrical and biological properties of ferrocene/poly(vinylpyrrolidone) composite nanofibers

  • Ji-Hong Chai and
  • Qing-Sheng Wu

Beilstein J. Nanotechnol. 2013, 4, 189–197, doi:10.3762/bjnano.4.19

Graphical Abstract
  • model organisms. The nanofibers fabricated by this method showed obvious antibacterial activity. Electrochemical properties were characterized based on cyclic voltammetry measurements. The CV results showed redox peaks corresponding to the Fc+/Fc couple, which suggested that Fc molecules encapsulated
  • inside PVP nanofibers retian their electrochemical activity. The properties and facile preparation method make the Fc/PVP nanofibers promising for antibacterial and sensing applications. Keywords: composites; electrochemistry; electrospinning; membranes; porous materials; Introduction Electrospinning
  • a polymer provides different properties compared with applying Fc alone. The incorporation of Fc in a polymeric matrix can improve the dispersion of Fc, increasing the catalyst effect and antibacterial activity of hybrid nanofibers. However, the current reports mainly focus on the preparation and
PDF
Album
Full Research Paper
Published 14 Mar 2013

Paper modified with ZnO nanorods – antimicrobial studies

  • Mayuree Jaisai,
  • Sunandan Baruah and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2012, 3, 684–691, doi:10.3762/bjnano.3.78

Graphical Abstract
  • ) nanoparticles embedded into a paper matrix have been reported as exhibiting antibacterial properties [4]. Wallpaper prepared by using zinc oxide nanoparticle (~20 nm) coatings has been reported to render antibacterial surfaces that inhibit growth of bacteria such as Escherichia coli (E. coli) [5]. An increase
  • in cellular internalization of ZnO nanoparticles has also been observed by Appierot et al. [6] in a study of their antibacterial effect on E. coli and S. aureus. This work reports on an antimicrobial paper containing zinc oxide (ZnO) nanorods grown by a hydrothermal process, and which can be used for
  • and H2O2 are harmful to the cells of living organisms and are the major contributors to antibacterial activity [11][12][13]. ZnO nanoparticles are reported to have significant antifungal properties against B. cinerea and P. expansum, and the inhibitory effects were found to increase with an increase
PDF
Album
Full Research Paper
Published 11 Oct 2012
Other Beilstein-Institut Open Science Activities