Search results

Search for "binding energies" in Full Text gives 174 result(s) in Beilstein Journal of Nanotechnology.

Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor

  • Ivan V. Komissarov,
  • Nikolai G. Kovalchuk,
  • Vladimir A. Labunov,
  • Ksenia V. Girel,
  • Olga V. Korolik,
  • Mikhail S. Tivanov,
  • Algirdas Lazauskas,
  • Mindaugas Andrulevičius,
  • Tomas Tamulevičius,
  • Viktoras Grigaliūnas,
  • Šarunas Meškinis,
  • Sigitas Tamulevičius and
  • Serghej L. Prischepa

Beilstein J. Nanotechnol. 2017, 8, 145–158, doi:10.3762/bjnano.8.15

Graphical Abstract
  • of the difference in ionic radii [16]. The radicals resulting from the decomposition of n-decane could lead to the decomposition of the nitrogen molecule, which in fact has one of the strongest binding energies. The resulting atomic nitrogen can be embedded into the graphene lattice. The n-decane was
PDF
Album
Full Research Paper
Published 16 Jan 2017

Fundamental properties of high-quality carbon nanofoam: from low to high density

  • Natalie Frese,
  • Shelby Taylor Mitchell,
  • Christof Neumann,
  • Amanda Bowers,
  • Armin Gölzhäuser and
  • Klaus Sattler

Beilstein J. Nanotechnol. 2016, 7, 2065–2073, doi:10.3762/bjnano.7.197

Graphical Abstract
  • these foams. XPS In Figure 3, the XPS spectra of low- and high-density carbon nanofoams are shown. The deconvolution of the C1s peaks leads to the C1 and C2 peaks which are assigned to sp2- and sp3-type carbons, corresponding to electron binding energies of 284.4 and 285.4 eV, respectively [54]. An
  • distribution is close to that of the distribution for sp2-type carbon with a small asymmetry toward higher binding energies. The distribution is quite narrow with a FWHM of about 2 eV. When deconvoluted, we find the areas of 64% and 30% for sp2 and sp3 components, respectively. The distribution in Figure 3c
PDF
Album
Full Research Paper
Published 27 Dec 2016

Effect of Anderson localization on light emission from gold nanoparticle aggregates

  • Mohamed H. Abdellatif,
  • Marco Salerno,
  • Gaser N. Abdelrasoul,
  • Ioannis Liakos,
  • Alice Scarpellini,
  • Sergio Marras and
  • Alberto Diaspro

Beilstein J. Nanotechnol. 2016, 7, 2013–2022, doi:10.3762/bjnano.7.192

Graphical Abstract
  • the XPS spectra of AuNPs drop-cast on glass and quartz substrates are shown. The values of the binding energy are also reported. The data shows that the surface state of the AuNPs is different between the two systems of AuNPs/quartz and AuNPs/glass. The binding energies are higher on quartz, with a
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2016

Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

  • Ivan Shtepliuk,
  • Jens Eriksson,
  • Volodymyr Khranovskyy,
  • Tihomir Iakimov,
  • Anita Lloyd Spetz and
  • Rositsa Yakimova

Beilstein J. Nanotechnol. 2016, 7, 1800–1814, doi:10.3762/bjnano.7.173

Graphical Abstract
  • heavy metal atom or ion and n is the total number of interacting heavy metal atoms or ions. To avoid the basis set superposition error (BSSE), the binding energies were calculated by means of counterpoise method [55]. The most important parameter that was extracted from our calculation, the work
  • involving heavy metals on graphene can be elucidated. Figure 6 and Figure 7 show the dependences of the binding energies of heavy metal atoms adsorbed on graphene on the number of atoms. The binding energies of isolated neutral Cd and Hg atoms on the graphene flake are 175 meV and 167 meV, respectively, but
  • heavy metals. (a) Dependence of the binding energies of Cd and Hg on the number of heavy metal atoms on graphene flake. (b) Dependence of the HOMO–LUMO gap of graphene clusters interacting with Cd and Hg on the number of heavy metal atoms. Dependence of the binding energy and HOMO-LUMO gap on number of
PDF
Album
Full Research Paper
Published 22 Nov 2016

Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics

  • Christian Suchomski,
  • Ben Breitung,
  • Ralf Witte,
  • Michael Knapp,
  • Sondes Bauer,
  • Tilo Baumbach,
  • Christian Reitz and
  • Torsten Brezesinski

Beilstein J. Nanotechnol. 2016, 7, 1350–1360, doi:10.3762/bjnano.7.126

Graphical Abstract
  • Fe in the Fe(III) state [33][34]. The apparent asymmetry of the Fe 2p peaks suggests that the inversion parameter must be greater than zero. The main peaks at binding energies of (724.59 ± 0.05) eV and (710.65 ± 0.05) eV for the 2p1/2 and 2p3/2 orbital lines, respectively, correspond to octahedral
  • deconvolution of the O 1s spectrum identified three different oxygen bonding states. The main peak at (529.60 ± 0.05) eV corresponds to lattice oxygen and the minor peaks at higher binding energies of (531.11 ± 0.05) eV and (532.07 ± 0.05) eV can be assigned to hydroxyl oxygen/oxygen from C–O and C=O
  • functionalities, respectively, with the latter originating from surface ligands. The C 1s spectrum can also be fitted into three peaks at (284.56 ± 0.05) eV, (286.06 ± 0.05) eV and (288.49 ± 0.05) eV. We ascribe the main peak centered at 284.6 eV to sp3-hybridized carbon (C–C); the minor peaks at higher binding
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2016

Experimental and simulation-based investigation of He, Ne and Ar irradiation of polymers for ion microscopy

  • Lukasz Rzeznik,
  • Yves Fleming,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2016, 7, 1113–1128, doi:10.3762/bjnano.7.104

Graphical Abstract
  • surface and which contributes to sputtering. The relation between the partial sputter yields of the different species is determined by the surface binding energies and the atomic number. F has the smallest surface binding energy (0.82eV), followed by H (1.00 eV), O (2.58 eV), C in sp3 configuration (5.00
PDF
Album
Full Research Paper
Published 02 Aug 2016

Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers

  • Kai Rückriem,
  • Sarah Grotheer,
  • Henning Vieker,
  • Paul Penner,
  • André Beyer,
  • Armin Gölzhäuser and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2016, 7, 852–861, doi:10.3762/bjnano.7.77

Graphical Abstract
  • copper signals have changed significantly. The shake-up peaks have disappeared, indicating a reduction of the copper(II) precursor [36][38], while the remaining signals shift to higher binding energies. The new value of the 2p3/2 peak agrees well with literature data for metallic copper [38] and copper
  • . Formation of copper oxides is excluded from the lack of additional signals at lower binding energies (see literature values in Table 1). We thus conclude that most of the copper(II) oxalate is reduced to metallic particles during the applied electron exposure of 16000 μC/cm2 at 50 eV. We note, however, that
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2016

First-principles study of the structure of water layers on flat and stepped Pb electrodes

  • Xiaohang Lin,
  • Ferdinand Evers and
  • Axel Groß

Beilstein J. Nanotechnol. 2016, 7, 533–543, doi:10.3762/bjnano.7.47

Graphical Abstract
  • reliable description of both water–water and water–metal interactions [32][46][50]. The binding energies per water molecule of water structures on Pb(111) with coverages of 1/3 and 2/3 are increased by less than 70 meV upon including dispersion, in particular, the energetic ordering is not changed, as
  • ice-like layers on Pb(111) and Ag(111), Eads, are compared to the binding energies of the free-standing water layers in the corresponding adsorption geometry, . First of all, it is obvious that the adsorption of the ice-like layer is much stronger on Ag(111) than on Pb(111). Also the binding energy
  • -correlation function. Calculated adsorption energies of water layers at a coverage of 2/3 on Pb(111) and Ag(111) compared to the binding energies of free-standing water layers in the corresponding adsorption geometries.
PDF
Album
Full Research Paper
Published 11 Apr 2016

Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

  • Yongfeng Tong,
  • Tingming Jiang,
  • Azzedine Bendounan,
  • Makri Nimbegondi Kotresh Harish,
  • Angelo Giglia,
  • Stefan Kubsky,
  • Fausto Sirotti,
  • Luca Pasquali,
  • Srinivasan Sampath and
  • Vladimir A. Esaulov

Beilstein J. Nanotechnol. 2016, 7, 263–277, doi:10.3762/bjnano.7.24

Graphical Abstract
  • species. It should be noted that in many cases the conclusions of the above mentioned investigations of dissociation processes in thiol self-assembly rely on the knowledge of the characteristic S 2p core level binding energies (CLBEs) for atomic S adsorption and the thiolate sulfur. These are usually
  • explored in several STM studies [81][84][85] and these are still being actively studied [82][86][87]. Although the S 2p binding energies for bulk copper sulfide are known, with a rare exception [83], there was previously not much information on CLBEs for sub-monolayer chemisorbed phases. A detailed
  • -defined √7 phase exists. A comparison with the thiol spectrum in Figure 3a then suggests that if this is really the underlying sulfide layer, the thiolate component lies at lower binding energies. To explore this further, the √7 phase PdS surface was first prepared and then exposed to C12T. The result was
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2016

Surface-site reactivity in small-molecule adsorption: A theoretical study of thiol binding on multi-coordinated gold clusters

  • Elvis C. M. Ting,
  • Tatiana Popa and
  • Irina Paci

Beilstein J. Nanotechnol. 2016, 7, 53–61, doi:10.3762/bjnano.7.6

Graphical Abstract
  • considered for each of methylthiol and methylthiolate. Additional calculations were performed for low-coordinated binding sites, to ensure proper sampling of the configurational space. The most stable equilibrated configurations, their binding energies and bond lengths for the different binding sites are
  • , from Liu et al. [77]. The addition of the dispersion correction enhanced non-dissociative binding energies in MeSH by 0.2 to 0.7 eV, and moderately increased chemisorption energies (MeS) by 0.2 to 0.5 eV. Non-dissociative adsorption. The binding energy in non-dissociative adsorption was calculated as
  • energy was evaluated. EBSSE is a negative value. Applying the CP correction to the binding energy, one gets Dissociative adsorption. Calculated binding energies for the dissociative adsorption took into account the release of hydrogen as H2: BSSE corrections were not calculated for the dissociative
PDF
Album
Full Research Paper
Published 18 Jan 2016

Self-organization of gold nanoparticles on silanated surfaces

  • Htet H. Kyaw,
  • Salim H. Al-Harthi,
  • Azzouz Sellai and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2015, 6, 2345–2353, doi:10.3762/bjnano.6.242

Graphical Abstract
  • peak (λmax) intensity on glass surface is observed at 7.4 eV. Upon APTES deposition, λmax is shifted to lower binding energies of ca. 6.3 eV, which can be attributed to the propyl chains (propyl 1) and a peak observed at 10.6 eV can be assigned to the propyl chain (propyl 2) of the APTES molecule [24
  • observed related to the orientation of APTES molecules on glass substrates (see Figure 2) that altered due to the attachment of AuNPs on the substrates. A broad band was observed at binding energies between 2 and 8 eV, which can be assigned to Au 5d band as the spin–orbit splitting of Au 5d3/2 and Au 5d5/2
  • measurements were conducted in ultrahigh high vacuum conditions of 2 × 10−10 mbar. In order to reduce surface charging effects, all the measured samples were flooded with electrons for charge compensation during the XPS measurements. The binding energies were calibrated with respect to adventitious C 1s
PDF
Album
Full Research Paper
Published 10 Dec 2015

Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Axel Hemberg,
  • Luca Petaccia,
  • Jean-François Colomer,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 2263–2271, doi:10.3762/bjnano.6.232

Graphical Abstract
  • binding energies higher than 285 eV. The deconvolution of the carbon peak is complex due to the uncertain assignment of fitting components; however, a satisfactory example is reported in Supporting Information File 1 for the as-functionalized sample (Supporting Information File 1, Figure S1). The analysis
  • to reproduce the C 1s peak, the degree of asymmetry of F 1s and O 1s decreased drastically upon heating. This suggests a different desorption temperature and hence distinct binding energies of the several species grafted on the carbon surface, as it will be discussed. After heating the sample to 150
  • atoms when the fluorine quantity is high, changing the chemical environment and consequently modifying the screening of the atoms. In parallel to desorption of fluorinated species, the oxygen components backshift towards the binding energies observed for the pristine sample, indicating the coexistence
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2015

Core-level spectra and molecular deformation in adsorption: V-shaped pentacene on Al(001)

  • Anu Baby,
  • He Lin,
  • Gian Paolo Brivio,
  • Luca Floreano and
  • Guido Fratesi

Beilstein J. Nanotechnol. 2015, 6, 2242–2251, doi:10.3762/bjnano.6.230

Graphical Abstract
  • adsorbed at T and B sites. Calculated initial state-binding energies are indicated as vertical bars with height proportional to the multiplicity of the non-equivalent carbon atoms (see Figure 1). These vertical bars when broadened (here with pseudo-Voigt profiles having 0.52 eV Lorentzian and 0.36 eV
  • the core hole, which is at the same distance in all cases determining, a net electron transfer, which may induce changes in the CLS. This effect can be estimated by performing additional simulations for the free undistorted molecule to calculate the shifts in binding energies as a function of a given
  • and increases that of C1 in agreement with a reduction in the difference between their core level binding energies thereby determining a narrower spectrum for B site adsorption as seen in Figure 4c and compensating the effects of electron transfer. NEXAFS We wish now to relate the simulated NEXAFS
PDF
Album
Full Research Paper
Published 27 Nov 2015

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
  • pairs, which are separated in the SCR. The voltage dependence of the polaron pair generation as well as the bias dependent drop of EB can both give rise to a rate r > 1. For PCMO, exciton binding energies can be neglected because of the high dielectric constant of ε = 30 [63]. By lowering the
PDF
Album
Full Research Paper
Published 07 Jul 2015

Electrical characterization of single molecule and Langmuir–Blodgett monomolecular films of a pyridine-terminated oligo(phenylene-ethynylene) derivative

  • Henrry M. Osorio,
  • Santiago Martín,
  • María Carmen López,
  • Santiago Marqués-González,
  • Simon J. Higgins,
  • Richard J. Nichols,
  • Paul J. Low and
  • Pilar Cea

Beilstein J. Nanotechnol. 2015, 6, 1145–1157, doi:10.3762/bjnano.6.116

Graphical Abstract
  • groups [67][68][69] and fullerenes [60][70][71]. However, many of these groups have significant limitations including chemical degradation at working temperatures [72][73], associated polymerization phenomena [74], small binding energies [74], unexpectedly high contact resistance [75][76][77][78][79][80
  • plane. To provide a precise energy calibration, the XPS binding energies were referenced to the C 1s peak at 284.6 eV. The thickness of LB films on the gold substrates was estimated using the attenuation of the Au 4f signal from the substrate according to ILB film = Isubstrate exp(−d/λsinθ), where d is
PDF
Album
Full Research Paper
Published 11 May 2015

Electronic interaction in composites of a conjugated polymer and carbon nanotubes: first-principles calculation and photophysical approaches

  • Florian Massuyeau,
  • Jany Wéry,
  • Jean-Luc Duvail,
  • Serge Lefrant,
  • Abu Yaya,
  • Chris Ewels and
  • Eric Faulques

Beilstein J. Nanotechnol. 2015, 6, 1138–1144, doi:10.3762/bjnano.6.115

Graphical Abstract
  • are summarized in Figure 2. We indeed find strong interaction between the PPV and both nanotubes with binding energies of 1.21 eV and 0.94 eV for the (4,4) and (7,0) tubes respectively. Figure 2c–f show band structures for the tube segments with and without the PPV. The metallic (4,4) tube is almost
PDF
Album
Full Research Paper
Published 08 May 2015

Transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons and the influence of the transformation strategies on the photocatalytic performance

  • Melita Rutar,
  • Nejc Rozman,
  • Matej Pregelj,
  • Carla Bittencourt,
  • Romana Cerc Korošec,
  • Andrijana Sever Škapin,
  • Aleš Mrzel,
  • Srečo D. Škapin and
  • Polona Umek

Beilstein J. Nanotechnol. 2015, 6, 831–844, doi:10.3762/bjnano.6.86

Graphical Abstract
  • respect to the N content, is hydrogen titanate. The effect of nitrogen substitutional doping should also be reflected in the position of the Ti 2p XPS peak. A small energy shift of the Ti 2p peak to lower binding energies is observed as the calcination temperature is increased (Figure S6, Supporting
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2015

Statistics of work and orthogonality catastrophe in discrete level systems: an application to fullerene molecules and ultra-cold trapped Fermi gases

  • Antonello Sindona,
  • Michele Pisarra,
  • Mario Gravina,
  • Cristian Vacacela Gomez,
  • Pierfrancesco Riccardi,
  • Giovanni Falcone and
  • Francesco Plastina

Beilstein J. Nanotechnol. 2015, 6, 755–766, doi:10.3762/bjnano.6.78

Graphical Abstract
  • particular, we consider the highest and lowest occupied MOs of the neutral molecule and some MOs of the ionized molecule to have similar binding energies relative to the perturbed Fermi level. The squared overlap between these states are listed in Table 1, while some of their orbital shapes are shown in
PDF
Album
Full Research Paper
Published 18 Mar 2015

Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: a study of functionalization and stability

  • Ognen Pop-Georgievski,
  • Dana Kubies,
  • Josef Zemek,
  • Neda Neykova,
  • Roman Demianchuk,
  • Eliška Mázl Chánová,
  • Miroslav Šlouf,
  • Milan Houska and
  • František Rypáček

Beilstein J. Nanotechnol. 2015, 6, 617–631, doi:10.3762/bjnano.6.63

Graphical Abstract
  • template striping [43], our high resolution titanium 2p spectra in the region of 450–468 eV showed the characteristic Ti 2p spin-split doublet structure, with a separation of approximately 6 eV between the Ti 2p1/2 and Ti 2p3/2 peaks (Figure 1). The binding energies of the contributions within the Ti 2p3/2
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2015

Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition

  • Nicolas Sobel,
  • Christian Hess,
  • Manuela Lukas,
  • Anne Spende,
  • Bernd Stühn,
  • M. E. Toimil-Molares and
  • Christina Trautmann

Beilstein J. Nanotechnol. 2015, 6, 472–479, doi:10.3762/bjnano.6.48

Graphical Abstract
  • observed, which may result from incorporated pyridinium chloride. Detailed analysis of the Si 2p peak at 103.3 eV reveals that silicon is exclusively present as Si4+ (see Table 2). This conclusion is based on a comparison with literature values for Si3+, Si2+, and Si1+ binding energies of 102.3, 101.3, and
PDF
Album
Full Research Paper
Published 16 Feb 2015

Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity

  • Kah Hon Leong,
  • Hong Ye Chu,
  • Shaliza Ibrahim and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2015, 6, 428–437, doi:10.3762/bjnano.6.43

Graphical Abstract
  • employed. As shown in Figure 6a, there are two peaks observed at binding energies of 458.8 eV and 464.4 eV, which correspond to Ti 2p3/2 and Ti 2p1/2 spin–orbit-splitting photoelectrons for pure anatase TiO2 [29]. These indicate the presence of typical Ti4+ in the synthesized samples. The presence of Pd
  • NPs can be distinguished by two peaks centered at binding energies of 334.3 eV and 340.0 eV, which are assigned to Pd 3d5/2, and Pd 3d3/2, respectively (Figure 6b) [48] and confirm the predominantly metallic form of the deposited noble metal. Optical absorption and photoluminescence The optical
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2015

X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

  • Toma Susi,
  • Thomas Pichler and
  • Paola Ayala

Beilstein J. Nanotechnol. 2015, 6, 177–192, doi:10.3762/bjnano.6.17

Graphical Abstract
  • , incorrect conclusions can easily be drawn, especially in the assignment of measured binding energies into specific atomic configurations. Starting from the characteristics of pristine materials, this review provides a practical guide for interpreting X-ray photoelectron spectra of doped graphitic carbon
  • nanomaterials, and a reference for their binding energies that are vital for compositional analysis via XPS. Keywords: carbon nanotubes; core level photoemission; graphene; substitutional doping; X-ray photoelectron spectroscopy (XPS); Introduction Graphitic carbon nanomaterials consist of carbon bonded via
  • significant influence of the substrate for measurements of graphene [35][36], and the disentanglement of the intrinsic photoemission responses of semiconducting and metallic single-walled carbon nanotubes (SWCNTs) [37]. Furthermore, as we shall see, identifying the binding energies associated with specific
PDF
Album
Review
Published 15 Jan 2015

Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state

  • Florian G. Strobl,
  • Florian Seitz,
  • Christoph Westerhausen,
  • Armin Reller,
  • Adriano A. Torrano,
  • Christoph Bräuchle,
  • Achim Wixforth and
  • Matthias F. Schneider

Beilstein J. Nanotechnol. 2014, 5, 2468–2478, doi:10.3762/bjnano.5.256

Graphical Abstract
  • ) after the incubation with nanoparticles (r = 42 nm, magenta). Obviously, vesicle membrane is consumed while particles are internalized. Expected van der Waals (solid line) and double layer (dashed line) binding energies as a function of the particle–membrane distance. The double layer interaction
PDF
Album
Full Research Paper
Published 23 Dec 2014

Two-dimensional and tubular structures of misfit compounds: Structural and electronic properties

  • Tommy Lorenz,
  • Jan-Ole Joswig and
  • Gotthard Seifert

Beilstein J. Nanotechnol. 2014, 5, 2171–2178, doi:10.3762/bjnano.5.226

Graphical Abstract
  • can be seen as an extension of Ohno’s work [12][35], which was limited to the valence bands and has been discussed above. They showed that tin and lead are divalent in compounds of the structure (MX)1+yTMX2 due to the fact that the core-level binding energies of these elements do not differ in either
PDF
Album
Review
Published 19 Nov 2014

UHV deposition and characterization of a mononuclear iron(III) β-diketonate complex on Au(111)

  • Irene Cimatti,
  • Silviya Ninova,
  • Valeria Lanzilotto,
  • Luigi Malavolti,
  • Luca Rigamonti,
  • Brunetto Cortigiani,
  • Matteo Mannini,
  • Elena Magnano,
  • Federica Bondino,
  • Federico Totti,
  • Andrea Cornia and
  • Roberta Sessoli

Beilstein J. Nanotechnol. 2014, 5, 2139–2148, doi:10.3762/bjnano.5.223

Graphical Abstract
  • between −2 and −7 eV is strongly dominated by the gold features while few molecular states are clearly visible only at higher binding energies, that is, at more negative values of E − EF (see inset in the bottom panel of Figure 2). These deeper molecular states can be easily associated to those observed
  • larger discrepancies observed at higher binding energies. By plotting the projected density of states (PDOS) on the ligands and the iron ion (see Figure 3a), it is evident that dpm− ligands provide the main orbital contributions to the energy region where the molecular peaks (a, b, c, d) can be
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2014
Other Beilstein-Institut Open Science Activities