Search results

Search for "chemical reactions" in Full Text gives 134 result(s) in Beilstein Journal of Nanotechnology.

Substrate-mediated effects in photothermal patterning of alkanethiol self-assembled monolayers with microfocused continuous-wave lasers

  • Anja Schröter,
  • Mark Kalus and
  • Nils Hartmann

Beilstein J. Nanotechnol. 2012, 3, 65–74, doi:10.3762/bjnano.3.8

Graphical Abstract
  • advantage of nonlinear effects, such as photothermal and multiphoton absorption processes [11][12][13][14][15][16][17]. In photothermal processing, laser light is used in order to locally heat the substrate surface and initiate chemical reactions [12]. Commonly, photothermal patterning of SAMs is carried
PDF
Album
Full Research Paper
Published 26 Jan 2012

Octadecyltrichlorosilane (OTS)-coated ionic liquid drops: Micro-reactors for homogenous catalytic reactions at designated interfaces

  • Xiaoning Zhang and
  • Yuguang Cai

Beilstein J. Nanotechnol. 2012, 3, 33–39, doi:10.3762/bjnano.3.4

Graphical Abstract
  • defects on the OTS coating layer provided spaces for the catalyst inside the capsule and reactants outside the capsule to react. Hence, the coated IL drops enable the interfacial chemical reactions. Results and Discussion Chemical pattern-directed assembly of IL on surface The carboxylic acid-terminated
PDF
Album
Supp Info
Letter
Published 12 Jan 2012

Micro- and mesoporous solids: From science to application

  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2011, 2, 774–775, doi:10.3762/bjnano.2.85

Graphical Abstract
  • achieve a basic understanding of what happens inside the porous framework of such a solid on the molecular, and nano- and mesocopic level, in a hierarchical order, during adsorption, desorption and chemical reactions. Alongside the development of experimental methods to unravel the details of the
PDF
Album
Editorial
Published 30 Nov 2011

How to remove the influence of trace water from the absorption spectra of SWNTs dispersed in ionic liquids

  • Juan Yang,
  • Daqi Zhang and
  • Yan Li

Beilstein J. Nanotechnol. 2011, 2, 653–658, doi:10.3762/bjnano.2.69

Graphical Abstract
  • electrochemistry [4][5], and chemical reactions and separations [6][7][8][9]. In 2003, Fukushima et al. [10] found that by mixing together and mechanically grinding the single-walled carbon nanotubes with imidazolium-based ILs, a thermally stable bucky gel can be formed with SWNTs untangled from the heavily
PDF
Album
Full Research Paper
Published 30 Sep 2011

Inorganic–organic hybrid materials through post-synthesis modification: Impact of the treatment with azides on the mesopore structure

  • Miriam Keppeler,
  • Jürgen Holzbock,
  • Johanna Akbarzadeh,
  • Herwig Peterlik and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2011, 2, 486–498, doi:10.3762/bjnano.2.52

Graphical Abstract
  • structural features such as pore size, connectivity, etc., are strongly influenced by the presence of the organosilane [25]. These organo-functionalized silica gels can be further modified by chemical reactions with more complex functional groups; recent examples include Cu(I)-catalyzed 1,3-dipolar
  • cycloadditions, also termed Click reactions, on silica surfaces involving alkynes and azide functionalities [26][27][28]. Reviewing the literature on this topic reveals that most of the examples of postsynthesis surface chemical reactions are concerned with the successful chemical conversion, but the structure
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2011

Organic–inorganic nanosystems

  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 363–364, doi:10.3762/bjnano.2.41

Graphical Abstract
  • specificity for subsequent chemical reactions or, in the simplest case, served as a spacer to avoid aggregation in a system of corresponding nanoobjects. However, there is yet another highly active field where the organic component delivers the sought after functionality of a device: Organic electronics. Here
PDF
Video
Editorial
Published 12 Jul 2011

Extended X-ray absorption fine structure of bimetallic nanoparticles

  • Carolin Antoniak

Beilstein J. Nanotechnol. 2011, 2, 237–251, doi:10.3762/bjnano.2.28

Graphical Abstract
  • nanoparticles follows the approach by S. Sun et al. [84] by the reduction of platinum diacetylacetonate, Pt(acac)2 and thermal decomposition of iron pentacarbonyl, Fe(CO)5, in hexadecane-1,2-diol at about 300 °C. The chemical reactions were initiated in the presence of the surfactants oleic acid and oleyl amine
PDF
Album
Review
Published 11 May 2011

Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

  • Thomas König,
  • Georg H. Simon,
  • Lars Heinke,
  • Leonid Lichtenstein and
  • Markus Heyde

Beilstein J. Nanotechnol. 2011, 2, 1–14, doi:10.3762/bjnano.2.1

Graphical Abstract
  • example, defects are often preferred adsorption sites and hence are particularly chemically active. Electrically charged defects may enable electron transfer processes, which play an important role in chemical reactions in general and in heterogeneous catalysis in particular. A sketch of a binary oxide
  • on the MgO surface are investigated in detail and classified by their charge state. From calculations it has been proposed that color centers are directly involved in chemical reactions [23][24], e.g., as adsorption sites due to more attractive defect-adsorbate interactions compared with the pristine
PDF
Album
Review
Published 03 Jan 2011

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • such as the annealing of the covered NPs appears unfavorable due to the possible occurrence of chemical reactions. If, however, all these problems are carefully considered, SQUID-magnetometry can provide valuable information. The drawback of a strong diamagnetic substrate contribution in SQUID
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities