Search results

Search for "electron transport" in Full Text gives 131 result(s) in Beilstein Journal of Nanotechnology.

Current-induced dynamics in carbon atomic contacts

  • Jing-Tao Lü,
  • Tue Gunst,
  • Per Hedegård and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2011, 2, 814–823, doi:10.3762/bjnano.2.90

Graphical Abstract
  • ][20], their stability [21], and electron-transport properties [22][23][24]. Here we explore the current-induced forces and nanoscale Joule heating of the carbon chain system between electrically gated graphene electrodes. The paper is organized as follows. After a brief outline of the semiclassical
  • steady-state electron transport without electron–phonon interaction [33], where AL/R are the density of state matrices for electronic states originating in the left/right electrodes, each with chemical potential μL/R [33], which differ for finite bias voltage, V, as μL − μR = eV, and nF(ω) = 1/(eω/kBT
PDF
Album
Adds. & Corrs.
Full Research Paper
Published 16 Dec 2011

Effect of the environment on the electrical conductance of the single benzene-1,4-diamine molecule junction

  • Shigeto Nakashima,
  • Yuuta Takahashi and
  • Manabu Kiguchi

Beilstein J. Nanotechnol. 2011, 2, 755–759, doi:10.3762/bjnano.2.83

Graphical Abstract
  • coverage of the BDA molecule at metal electrodes and atomic and molecular motion of the single-molecule junction. Keywords: benzene-1,4-diamine; electric conductance; single-molecule junction; solvent; Introduction The electron transport properties through a single molecule bridging metal electrodes
  • electrodes themselves. Wu et al. demonstrated that the aromatic π–π coupling between adjacent molecules affected the formation of the molecule junction and electron transport through the molecule junction [6]. Venkataraman’s group and our group independently evaluated the electron-transport properties of π
  • -stacked systems [7][8]. We showed that the conductance of the π-stacked system decreased with the number of π molecules, and the decrease in conductance per unit of electron-transport distance was comparable to that of the conventional single-molecule junction. Dahlke et al. investigated the effect of the
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2011

Towards quantitative accuracy in first-principles transport calculations: The GW method applied to alkane/gold junctions

  • Mikkel Strange and
  • Kristian S. Thygesen

Beilstein J. Nanotechnol. 2011, 2, 746–754, doi:10.3762/bjnano.2.82

Graphical Abstract
  • results cannot be mimicked by DFT calculations employing a simple scissors operator. Keywords: alkanes; density functional theory; electron transport; gold junction; GW; Introduction The conductance of a molecule sandwiched between metallic electrodes is sensitive to the chemical and electronic
  • junction geometry, a quantitatively accurate description of electron transport from first principles remains a formidable task. Numerous studies based on density functional theory (DFT) have shown a significant overestimation of conductance relative to experimental values [3][4][5][6][7][8][9][10][11][12
  • approximation to study the role of exchange–correlation effects for the energy-level alignment and electron transport in short alkane chains coupled to gold electrodes through amine linker groups. The gold/alkane junction is a benchmark system for molecular charge transport and has been exhaustively
PDF
Album
Full Research Paper
Published 09 Nov 2011

Interaction of spin and vibrations in transport through single-molecule magnets

  • Falk May,
  • Maarten R. Wegewijs and
  • Walter Hofstetter

Beilstein J. Nanotechnol. 2011, 2, 693–698, doi:10.3762/bjnano.2.75

Graphical Abstract
  • Grünberg Institut and JARA - Fundamentals of Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany 10.3762/bjnano.2.75 Abstract We study electron transport through a single-molecule magnet (SMM) and the interplay of its anisotropic spin with quantized vibrational distortions of the
PDF
Album
Full Research Paper
Published 18 Oct 2011

Transport through molecular junctions

  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2011, 2, 691–692, doi:10.3762/bjnano.2.74

Graphical Abstract
  • the problem and inherent to (single) molecular junctions. The study of such junctions requires the gathering of statistics covering many configurations. The field of study of electron transport through molecular junctions requires input from many subdisciplines and this interdisciplinary character
PDF
Editorial
Published 18 Oct 2011

Simple theoretical analysis of the photoemission from quantum confined effective mass superlattices of optoelectronic materials

  • Debashis De,
  • Sitangshu Bhattacharya,
  • S. M. Adhikari,
  • A. Kumar,
  • P. K. Bose and
  • K. P. Ghatak

Beilstein J. Nanotechnol. 2011, 2, 339–362, doi:10.3762/bjnano.2.40

Graphical Abstract
  • effective mass when it is energy dependent. Under degenerate conditions, only the electrons at the Fermi surface of n-type semiconductors participate in the conduction process and hence, the effective momentum mass of the electrons (EMM), corresponding to the Fermi level, would be of interest in electron
  • transport under such conditions. The Fermi energy is again determined by the carrier energy spectrum and the carrier concentration and therefore, these two features would determine the dependence of the EMM in degenerate materials on the degree of carrier degeneracy. In recent years, the EMM in such
PDF
Album
Full Research Paper
Published 06 Jul 2011
Other Beilstein-Institut Open Science Activities