Search results

Search for "free energy" in Full Text gives 132 result(s) in Beilstein Journal of Nanotechnology.

Variations in the structure and reactivity of thioester functionalized self-assembled monolayers and their use for controlled surface modification

  • Inbal Aped,
  • Yacov Mazuz and
  • Chaim N. Sukenik

Beilstein J. Nanotechnol. 2012, 3, 213–220, doi:10.3762/bjnano.3.24

Graphical Abstract
  • , the exposure of the high-free-energy sulfonated surface to organic solvent leads to surface reorganization and loss of hydrophilicity. Thus, in order to take advantage of the enormous change in surface wetting achieved by the oxidation of a system such as 1g–i (from a water contact angle of over 100
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2012

Size-dependent phase diagrams of metallic alloys: A Monte Carlo simulation study on order–disorder transitions in Pt–Rh nanoparticles

  • Johan Pohl,
  • Christian Stahl and
  • Karsten Albe

Beilstein J. Nanotechnol. 2012, 3, 1–11, doi:10.3762/bjnano.3.1

Graphical Abstract
  • difference in the chemical potentials Δμ = μPt − μRh is used as a control variable in addition to the temperature T. The method allows the calculation of the total free-energy surface as a function of temperature and composition. Although there is not a simple equation for the high-temperature expansion of
  • the free energy in the case of particles, we are still able to perform thermodynamic integration to obtain free-energy differences. The integration is performed from T = 285 K down to T = 50 K in 5 K steps. For each temperature step the system was equilibrated for 900 MC steps and then data was
  • 1971, without a specific name being assigned, as an antiferromagnetic ground state of the Ising model with certain ratios of the first- and second-nearest-neighbor interactions on a face-centered cubic lattice [29]. The vertical lines in the plot represent equipotential lines of the free energy for
PDF
Album
Full Research Paper
Published 02 Jan 2012
Graphical Abstract
  • lower-free-energy residues of silane coupling agents into the films. The silane introduction was performed by following the procedure reported by Wang et al., with some modifications [46]. Typically, the nanograss-covered slide (2.5 × 3.5 cm) was immersed into a mixture prepared by adding a 3 mL
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2011

Lifetime analysis of individual-atom contacts and crossover to geometric-shell structures in unstrained silver nanowires

  • Christian Obermair,
  • Holger Kuhn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2011, 2, 740–745, doi:10.3762/bjnano.2.81

Graphical Abstract
  • there are minima in the thermodynamic potential of the contact as a function of the radius, and radii with minima in their free energy are encountered more frequently during contact formation. In electronic shells these minima in free energy are related to the configuration of the electron system of the
  • contacting atoms by analogy with the “magic” configurations in metal cluster. In geometric shells the free energy is lowered by the change of surface energy when completing a layer of atoms on the nanowire facets, which is also known from cluster physics [20][21]. Both the electronic- and the geometric-shell
  • oscillations of the free energy of the electron system of the contact, the amplitude of the local energy minima decreasing as 1/R due to shell filling [33]. On the other hand there is an oscillation in the surface energy due to the filling of geometric shells, for which the amplitude is roughly constant in
PDF
Album
Full Research Paper
Published 03 Nov 2011

Surface induced self-organization of comb-like macromolecules

  • Konstantin I. Popov,
  • Vladimir V. Palyulin,
  • Martin Möller,
  • Alexei R. Khokhlov and
  • Igor I. Potemkin

Beilstein J. Nanotechnol. 2011, 2, 569–584, doi:10.3762/bjnano.2.61

Graphical Abstract
  • qualitatively corresponds to the spinodal conditions for microphase segregation in melts of diblock copolymers [52]. Calculation of the free energy for a comblike copolymer with complete segregation of side chains showed that a molecule can spontaneously curve. A simulation study [53] confirmed the existence of
  • . The free energy was calculated by summation of the bending energy of the wormlike chain of the backbone, the Maier–Saupe contribution for LC ordering of side LC chains, the stretching energy of the amorphous block, the surface tension and the mixing Flory–Huggins contributions. Later studies [95][96
  • ]. The free energy of the curved conformation is smaller due to the decrease in the extension of the side chains under their asymmetric distribution. On the convex side of the brush, the extension drops due to enlargement of accessible space, while on the concave side it decreases due to a reduction in
PDF
Album
Full Research Paper
Published 12 Sep 2011

Self-organizing bioinspired oligothiophene–oligopeptide hybrids

  • Alexey K. Shaytan,
  • Eva-Kathrin Schillinger,
  • Elena Mena-Osteritz,
  • Sylvia Schmid,
  • Pavel G. Khalatur,
  • Peter Bäuerle and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2011, 2, 525–544, doi:10.3762/bjnano.2.57

Graphical Abstract
  • to the local free-energy minimum where all local degrees of freedom (torsion angles, side chain conformations, hydrogen bonds) achieve their optimal positions. Then, these optimal arrangements were used to construct long fibrillar aggregates, the dynamic and statistical behaviors of which were
  • some microcrystals [37][38], followed by an extensive relaxation MD run allowing the molecules to adjust their periodic arrangement to the best local minimum of free energy. The double-layer arrangements were then created from the single layer arrangements. In principle, possible hypothetical double
PDF
Album
Review
Published 05 Sep 2011

Capillary origami: superhydrophobic ribbon surfaces and liquid marbles

  • Glen McHale,
  • Michael I. Newton,
  • Neil J. Shirtcliffe and
  • Nicasio R. Geraldi

Beilstein J. Nanotechnol. 2011, 2, 145–151, doi:10.3762/bjnano.2.18

Graphical Abstract
  • one of the current authors explained on the basis of the changes in the balance between interfacial and bending energies [11]. In a previous report, McHale argued from surface free energy considerations that, when the bending energy is small, all solids should demonstrate droplet wrapping and so can
  • radius Rg with a roughness rW attaches to a droplet of radius R (Figure 4c), we deduce the change in surface free energy ΔFMT, where Acap = πRg2(1 + cosθT) is the spherical cap area of the solid grain of radius Rg intersecting the droplet and θT is either the Wenzel contact angle or the Cassie–Baxter
  • . Formation of a liquid marbles: a) droplet contacting substrate composed of loose grains, b) attachment of grains to encapsulate a droplet, c) minimisation of surface free energy by replacement of a portion of the liquid–vapor interface by a portion of the rough solid surface from an attaching grain
PDF
Album
Full Research Paper
Published 10 Mar 2011
Other Beilstein-Institut Open Science Activities