Search results

Search for "gold Nanoparticles" in Full Text gives 233 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Fixation mechanisms of nanoparticles on substrates by electron beam irradiation

  • Daichi Morioka,
  • Tomohiro Nose,
  • Taiki Chikuta,
  • Kazutaka Mitsuishi and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2017, 8, 1523–1529, doi:10.3762/bjnano.8.153

Graphical Abstract
  • , and several steps of chemical treatments. Noriki et al. [8] combined electron beam irradiation with a chemical reaction to pattern gold nanoparticles onto substrates. This technique consists of three steps: Firstly, gold nanoparticles are placed over the entire surface of a substrate. Secondly, the
  • gold nanoparticles are fixed on the substrate by electron beam irradiation. Finally, the unfixed nanoparticles are removed. In the second step, the organic molecules (e.g. citrate) surrounding the nanoparticles are decomposed to amorphous carbon, and this amorphous carbon existing in the gap between
  • the particle and the substrate fixes the particles. However, in this original technique, the area of fixed gold nanoparticles was wider than the electron-probe size of a few nanometers [8]. To understand the mechanisms of this widening, the effects of accelerating voltage, particle size and substrate
PDF
Album
Full Research Paper
Published 26 Jul 2017

Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy

  • Isabella Tavernaro,
  • Christian Cavelius,
  • Henrike Peuschel and
  • Annette Kraegeloh

Beilstein J. Nanotechnol. 2017, 8, 1283–1296, doi:10.3762/bjnano.8.130

Graphical Abstract
  • ]. All in all, STED microscopy requires fluorescently labelled markers with high photostability to identify relevant interactions between nanoparticles and cellular structures. In the last years different types of markers have been used for fluorescence-based microscopy, such as modified inorganic gold
  • nanoparticles [24][25], silica nanoparticles [26] or quantum dots [27][28]. These fluorescent nanoparticles fulfil some of the specific requirements and overcome disadvantages of common organic fluorescent dyes [29]. Especially silica nanoparticles have proven useful, since silicon chemistry provides a
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2017

Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy

  • Federico Gramazio,
  • Matteo Lorenzoni,
  • Francesc Pérez-Murano,
  • Enrique Rull Trinidad,
  • Urs Staufer and
  • Jordi Fraxedas

Beilstein J. Nanotechnol. 2017, 8, 883–891, doi:10.3762/bjnano.8.90

Graphical Abstract
  • a function of R obtained from commercial gold nanoparticles (5.5 ± 0.7 nm diameters) dispersed on a thin poly-lysine film grown on mica. From the figure we can observe the increase of A6 for increasing R values. Dependence of the amplitude of the 6th harmonic on bulk modulus Figure 6 shows the
  • Information File 86: Simulated evolution of the phase of the 6th harmonic as a function of tip radius. Correlation between the amplitude of the 6th harmonic and the tip radius obtained from gold nanoparticles dispersed on mica. Simulated evolution of the amplitude of the 6th harmonic as a function of the z
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2017

Selective detection of Mg2+ ions via enhanced fluorescence emission using Au–DNA nanocomposites

  • Tanushree Basu,
  • Khyati Rana,
  • Niranjan Das and
  • Bonamali Pal

Beilstein J. Nanotechnol. 2017, 8, 762–771, doi:10.3762/bjnano.8.79

Graphical Abstract
  • with the data obtained from literature, they show the change in position of the AuNSs and AuNRs [32]. Figure 5 clearly shows the even distribution of gold nanoparticles in the solution. The AFM images in Figure 5a show the distribution of AuNSs on the silicon wafer which indicates the proper dispersion
  • phosphate buffer) was added to the above solution and again incubated at room temperature for 1 h to cleave the disulfide bonds formed by the oligonucleotides upon addition of MPA. DNA functionalized gold nanoparticles were then washed twice by centrifugation (13,000 rpm, 15 min) to remove all unbound
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2017

Comparison of four methods for the biofunctionalization of gold nanorods by the introduction of sulfhydryl groups to antibodies

  • Xuefeng Wang,
  • Zhong Mei,
  • Yanyan Wang and
  • Liang Tang

Beilstein J. Nanotechnol. 2017, 8, 372–380, doi:10.3762/bjnano.8.39

Graphical Abstract
  • modified GNRs through an EDC/NHS coupling reaction [15][16]. Nevertheless, this ligand exchange method easily causes aggregation of GNRs because the amino and carboxyl groups of biomolecules can cross-link well with gold nanoparticles. Thus, an effective method should be developed to functionalize GNRs for
  • ]. Apart from Traut’s reagent, several different methods, such as DTT reduction, can be applied to anchor thiol groups into antibodies. DTT can partially reduce the disulfide bonds of the IgG antibody in the hinge region, and the resulting thiol groups can bind biomolecules to gold nanoparticles. Therefore
  • dithiolaromatic PEG6-CONHNH2 by specifically reacting with the carbohydrate moiety in the Fc portion of the antibody can direct the conjugating orientation. The compound has a hydrazide and dithiol group at opposite ends, which react with aldylated antibodies by NaIO4 modification and gold nanoparticles via Au–S
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2017

Comparison of four functionalization methods of gold nanoparticles for enhancing the enzyme-linked immunosorbent assay (ELISA)

  • Paula Ciaurriz,
  • Fátima Fernández,
  • Edurne Tellechea,
  • Jose F. Moran and
  • Aaron C. Asensio

Beilstein J. Nanotechnol. 2017, 8, 244–253, doi:10.3762/bjnano.8.27

Graphical Abstract
  • functionalization for ELISA enhancement. In this work, we use 20 nm gold nanoparticles (AuNPs) as a vehicle for secondary antibodies and peroxidase (HRP). The design of experiments technique (DOE) and four different methods for biomolecule loading were compared using a rabbit IgG/goat anti-rabbit IgG ELISA model
  • protein by functionalized multiwalled carbon nanotubes was observed by Zhang et al. [7]. However, the most significant improvements in signal have been rendered by gold nanoparticles (AuNPs), presenting promising unique chemical and physical properties, as well as biological compatibility [5][14][15
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2017

Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate

  • Oana-M. Buja,
  • Ovidiu D. Gordan,
  • Nicolae Leopold,
  • Andreas Morschhauser,
  • Jörg Nestler and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2017, 8, 237–243, doi:10.3762/bjnano.8.26

Graphical Abstract
  • of residues of malachite green (MG) using surface-enhanced Raman scattering (SERS) is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a
  • substrate. Keywords: gold nanoparticles; malachite green; microfluidic setup; SERS; silver nanoparticles; Introduction Over the past decade special attention has been given to the investigation of hazardous environmental chemicals with impact on human health [1][2][3][4]. Surface-enhanced Raman scattering
  • efficacy and residues of MG in farmed fish from several countries were reported [22][23]. Results and Discussion The SERS detection approach consisted in two sequential processes, both performed in situ: the synthesis of the SERS active spot, formed by silver or gold nanoparticles, followed by SERS
PDF
Album
Full Research Paper
Published 24 Jan 2017

Influence of hydrofluoric acid treatment on electroless deposition of Au clusters

  • Rachela G. Milazzo,
  • Antonio M. Mio,
  • Giuseppe D’Arrigo,
  • Emanuele Smecca,
  • Alessandra Alberti,
  • Gabriele Fisichella,
  • Filippo Giannazzo,
  • Corrado Spinella and
  • Emanuele Rimini

Beilstein J. Nanotechnol. 2017, 8, 183–189, doi:10.3762/bjnano.8.19

Graphical Abstract
  • Astronomy, v. S. Sofia 64, I-95123, Catania, Italy 10.3762/bjnano.8.19 Abstract The morphology of gold nanoparticles (AuNPs) deposited on a (100) silicon wafer by simple immersion in a solution containing a metal salt and hydrofluoric acid (HF) is altered by HF treatment both before and after deposition
  • nanoparticle arrays and to improve the conversion efficiency of hybrid photovoltaic devices. Keywords: electroless deposition; galvanic deposition; gold nanoparticles; HF acid treatment; HF-propelled motion; hydrogen termination; silicon surfaces; Introduction Gold nanoparticles on silicon substrates have
  • gold nanoparticles depends on their geometry and it is higher for well-shaped spherical particles than for flat islands [22]. Generally, an additional postdeposition annealing step is usually required to improve the spectral response. In our previous study on the GD of Au+ ions onto silicon substrates
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2017

Streptavidin-coated gold nanoparticles: critical role of oligonucleotides on stability and fractal aggregation

  • Roberta D'Agata,
  • Pasquale Palladino and
  • Giuseppe Spoto

Beilstein J. Nanotechnol. 2017, 8, 1–11, doi:10.3762/bjnano.8.1

Graphical Abstract
  • Andrea Doria 6, I-95125, Catania, Italy 10.3762/bjnano.8.1 Abstract Gold nanoparticles (AuNPs) exhibit unique properties that can be modulated through a tailored surface functionalization, enabling their targeted use in biochemical sensing and medical diagnostics. In particular, streptavidin-modified
  • thorough understanding of the fundamental properties of bioconjugated AuNPs is of great importance for the design of highly sensitive and reliable functionalized AuNP-based assays. Keywords: biosensors; DNA; gold nanoparticles; nanoparticles aggregation; plasmonics; streptavidin; Introduction Gold
  • colloids have been the focus of research for many decades because of their intriguing electronic and optical properties, depending on the size and shape of gold nanoparticles (AuNPs) [1], which support several biomedical and pharmaceutical applications [2]. The functionalization of AuNPs with biologically
PDF
Album
Full Research Paper
Published 02 Jan 2017

Solvent-mediated conductance increase of dodecanethiol-stabilized gold nanoparticle monolayers

  • Patrick A. Reissner,
  • Jean-Nicolas Tisserant,
  • Antoni Sánchez-Ferrer,
  • Raffaele Mezzenga and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2016, 7, 2057–2064, doi:10.3762/bjnano.7.196

Graphical Abstract
  • networks; Self-assembly; Introduction Ordered gold nanoparticle monolayers are increasingly applied as templates for molecular resistor networks [1][2][3][4][5][6][7][8]. Gold nanoparticles serve as conducting nodes and different molecules can bind to the gold nanoparticle using anchoring groups such as
  • further depends on the percolation of charge carriers [11][12]. Initially, gold nanoparticles are typically stabilized by alkanethiol ligands, which are poor conductors. As reported, the conductivity of nanoparticle networks can be increased by immersing the substrate with the nanoparticle monolayer in a
  • alone can induce a structural transition responsible for a large portion of the observed increase in conductivity of micro-contact printed self-assembled gold nanoparticle monolayers. Results and Discussion Gold nanoparticles with an average diameter of 10.6 nm measured by small-angle X-ray scattering
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2016

A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a

  • Maryam Daneshpour,
  • Kobra Omidfar and
  • Hossein Ghanbarian

Beilstein J. Nanotechnol. 2016, 7, 2023–2036, doi:10.3762/bjnano.7.193

Graphical Abstract
  • miRNA were confirmed by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. Differential pulse voltammetry (DPV) was used for quantitative evaluation of miR-106a via recording the reduction peak current of gold nanoparticles. The electrochemical signal had a linear
  • electrochemical characteristics, high surface-to-volume ratio, remarkable surface energy, and great biocompatibility, gold nanoparticles have been one of the most common choices for labeling in electrochemical biosensors [35]. In the present study, we fabricated a simple, sensitive, and specific electrochemical
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2016

Effect of Anderson localization on light emission from gold nanoparticle aggregates

  • Mohamed H. Abdellatif,
  • Marco Salerno,
  • Gaser N. Abdelrasoul,
  • Ioannis Liakos,
  • Alice Scarpellini,
  • Sergio Marras and
  • Alberto Diaspro

Beilstein J. Nanotechnol. 2016, 7, 2013–2022, doi:10.3762/bjnano.7.192

Graphical Abstract
  • size and shape of the nanostructured system. In this work, we studied the photoluminescence dependence of aggregates of 14 nm diameter gold nanoparticles (AuNPs) synthesized by drop-casting a liquid suspension on two different substrates of glass and quartz. The AuNP aggregates were characterized by
  • strong optical nonlinearity, which brings in many opportunities for useful applications. For example, the third order nonlinear susceptibility χ(3) of gold nanoparticles (AuNPs) (χ(3) < 1 nm2V−2) [13] is three orders of magnitude higher than that of nonlinear crystals such as potassium di-hydrogen
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2016

Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors

  • Celia García-Hernández,
  • Cristina García-Cabezón,
  • Fernando Martín-Pedrosa,
  • José Antonio De Saja and
  • María Luz Rodríguez-Méndez

Beilstein J. Nanotechnol. 2016, 7, 1948–1959, doi:10.3762/bjnano.7.186

Graphical Abstract
  • electrodes chemically modified with PEDOT/PSS towards catechol and hydroquinone sensing have been successfully improved by combining layers of PEDOT/PSS with layers of a secondary electrocatalytic material such as gold nanoparticles (PEDOT/PSS/AuNPs), copper phthalocyanine (PEDOT/PSS/CuPc) or lutetium
  • EMs, three different materials with different characteristics and electrocatalytic activity towards phenols were tested, including gold nanoparticles (AuNPs), a copper phthalocyanine (CuPc) (a p-type semiconductor) and a lutetium bisphthalocyanine (LuPc2) (a sandwich-type derivative with free radical
  • electron mediators to facilitate the transfer of electrons from the enzyme to the electrode [20]. PEDOT/PSS is becoming popular as an electron mediator in biosensing [21][22]. Gold nanoparticles and phthalocyanines have also been positively demonstrated as electron mediators in tyrosinase biosensors [16
PDF
Album
Full Research Paper
Published 08 Dec 2016

Functionalized platinum nanoparticles with surface charge trigged by pH: synthesis, characterization and stability studies

  • Giovanna Testa,
  • Laura Fontana,
  • Iole Venditti and
  • Ilaria Fratoddi

Beilstein J. Nanotechnol. 2016, 7, 1822–1828, doi:10.3762/bjnano.7.175

Graphical Abstract
  • colloidal stability; hydrophobic or hydrophilic thiol-based ligands have been deeply exploited [14][15]. Among others, 2-diethylaminoethanethiol hydrochloride (DEA) has been used as a stabilizing thiol for gold nanoparticles used for the immobilization of lipase [16]. Among others, hydrothermal and
PDF
Album
Full Research Paper
Published 24 Nov 2016

Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

  • Ivan Shtepliuk,
  • Jens Eriksson,
  • Volodymyr Khranovskyy,
  • Tihomir Iakimov,
  • Anita Lloyd Spetz and
  • Rositsa Yakimova

Beilstein J. Nanotechnol. 2016, 7, 1800–1814, doi:10.3762/bjnano.7.173

Graphical Abstract
  • with functionalized gold nanoparticles and DNA for detecting mercury ions in aqueous solution was also demonstrated [19][22]. It has to be pointed out that graphene loses part of its exotic properties after oxidation, thereby degrading its intrinsically high sensing capability. Furthermore, according
PDF
Album
Full Research Paper
Published 22 Nov 2016

Surface-enhanced infrared absorption studies towards a new optical biosensor

  • Lothar Leidner,
  • Julia Stäb,
  • Jennifer T. Adam and
  • Günter Gauglitz

Beilstein J. Nanotechnol. 2016, 7, 1736–1742, doi:10.3762/bjnano.7.166

Graphical Abstract
  • to signal enhancement is demonstrated by the surface-enhanced infrared attenuated infrared total reflection (SEIRA-ATR) set-up used by López-Lorente and co-workers [13]. Gold nanoparticles were directly synthesized within a liquid cell of an ATR unit and deposited on the surface of the ATR waveguide
PDF
Album
Full Research Paper
Published 16 Nov 2016

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • on nanopatterned ECM-mimicking surfaces was evaluated [251]. For this, the authors applied an array of biofunctionalized gold nanostructures. The gold nanoparticles on these surfaces have a diameter of 8 nm and had interparticle spacings of 40 nm or 90 nm and were conjugated with a RGD-peptide or a
PDF
Album
Review
Published 08 Nov 2016

Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability

  • Mykola Borzenkov,
  • Anni Määttänen,
  • Petri Ihalainen,
  • Maddalena Collini,
  • Elisa Cabrini,
  • Giacomo Dacarro,
  • Piersandro Pallavicini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2016, 7, 1480–1485, doi:10.3762/bjnano.7.140

Graphical Abstract
  • Chemistry, Center of Functional Materials, Åbo Academi University, Porthaninkatu 3-5, 20500, Turku, Finland Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy 10.3762/bjnano.7.140 Abstract Inkjet printing of spherical gold nanoparticles is widely applied in the
  • fabrication of analytical and diagnostics tools. These methods could be extended to non-spherical gold nanoparticles that can efficiently release heat locally when irradiated in the near infrared (NIR) wavelength region, due to localized surface plasmon resonance (LSPR). However, this promising application
  • of gold nanoparticles in nanomedicine [8][9][10][11][12], and in the fabrication of a broad spectrum of printed diagnostic and analytical tools [13][14][15]. Gold nanoparticles have also large extinction cross-sections in the range of 700–1100 nm (known as the bio-transparent window) because of
PDF
Album
Supp Info
Letter
Published 19 Oct 2016

Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal

  • Eduardo Aluicio-Sarduy,
  • Simone Callegari,
  • Diana Gisell Figueroa del Valle,
  • Andrea Desii,
  • Ilka Kriegel and
  • Francesco Scotognella

Beilstein J. Nanotechnol. 2016, 7, 1404–1410, doi:10.3762/bjnano.7.131

Graphical Abstract
  • knowledge, has not been reported in the literature. However, plasmon peak tuning of gold nanoparticles with an electric field in an electrochemical cell has been recently shown [17], opening the way to a new strategy for electro-optical switches with metal nanostructures. In this paper we show experimental
  • diameter). An exact evaluation would require a deeper analysis. Moreover, Brown et al. [17] showed that the electrochemical doping of gold nanoparticles in solution is, apart from a change in carrier density, accompanied by an increase in the surrounding medium refractive index. A change of the dielectric
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2016

Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

  • Silvia Varela-Aramburu,
  • Richard Wirth,
  • Chian-Hui Lai,
  • Guillermo Orts-Gil and
  • Peter H. Seeberger

Beilstein J. Nanotechnol. 2016, 7, 1278–1283, doi:10.3762/bjnano.7.118

Graphical Abstract
  • Nanoparticles ranging in size from 1 to 100 nm are ideal tools to study biological processes [1][2]. Many different materials, including gold, have been used to create nanoparticles [3][4][5][6]. Gold nanoparticles are an attractive platform because of their biocompatibility, low toxicity, and low
  • immunogenicity [7], their inherent optoelectronic properties [8] and high transmission electron microscopy (TEM) contrast. They are relatively easy to synthesize, functionalize, are biocompatible and have controllable optical properties [3][9][10][11][12]. Therefore, gold nanoparticles functionalized with
  • carbohydrates [13], proteins [14], antibodies [15] and DNA [16] are commonly used as multivalent materials for biological studies. Gold nanoparticles have been used in vivo as radiotracers [15][17], for targeted delivery [18] and, when functionalized with carboxylic acids, inhibit β-amyloid fibril growth
PDF
Album
Supp Info
Letter
Published 08 Sep 2016

Tunable longitudinal modes in extended silver nanoparticle assemblies

  • Serene S. Bayram,
  • Klas Lindfors and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2016, 7, 1219–1228, doi:10.3762/bjnano.7.113

Graphical Abstract
  • temperatures. These robust AgNPs assemblies are comparably thermally resistant to previously described self-assembled gold nanoparticles [38] allowing for a broader blue-shifted bimodal optical tuning of plasmonic assemblies. To further examine the influence of hydrogen bonding on the assembly, the thiol and
  • produce highly anisotropic UV–visible spectra reminiscent of high aspect ratio 1D nanoparticles such as rods. While such structures have been observed for gold nanoparticles, the greater reactivity of silver has made its controlled assembly more difficult. This degree of anisotropy reported here, with
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2016

Photocurrent generation in carbon nanotube/cubic-phase HfO2 nanoparticle hybrid nanocomposites

  • Protima Rauwel,
  • Augustinas Galeckas,
  • Martin Salumaa,
  • Frédérique Ducroquet and
  • Erwan Rauwel

Beilstein J. Nanotechnol. 2016, 7, 1075–1085, doi:10.3762/bjnano.7.101

Graphical Abstract
  • nanoparticles [26][27]. Birojou et al. have also observed that in the case of nonfunctionalized graphene decorated by gold nanoparticles via electrostatic interactions, the defect sites on the graphene are preferentially decorated by the Au nanoparticles with an increase in the sp2 hybridization of graphene in
PDF
Album
Full Research Paper
Published 26 Jul 2016

Sandwich-like layer-by-layer assembly of gold nanoparticles with tunable SERS properties

  • Zhicheng Liu,
  • Lu Bai,
  • Guizhe Zhao and
  • Yaqing Liu

Beilstein J. Nanotechnol. 2016, 7, 1028–1032, doi:10.3762/bjnano.7.95

Graphical Abstract
  • 10.3762/bjnano.7.95 Abstract Sandwich-like layer-by-layer thin films consisting of polyelectrolytes and gold nanoparticles were utilized to construct surface-enhanced Raman scattering (SERS) substrates with tunable SERS properties. It is found that both the size of the nanoparticles in the layers and the
  • multilayer thin films could be obtained using LbL assembly techniques via electrostatic interactions [15]. By controlling the number of deposition layers, the plasmonic properties as well as the SERS properties could be tuned easily. Moreover, Kim and co-workers showed that gold nanoparticles (Au NPs) could
PDF
Album
Supp Info
Letter
Published 15 Jul 2016

A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study

  • Kamil Moldosanov and
  • Andrei Postnikov

Beilstein J. Nanotechnol. 2016, 7, 983–989, doi:10.3762/bjnano.7.90

Graphical Abstract
  • electron mean free path l0 in gold nanoparticles. Rough estimates in our earlier work yield l0 ≈ 1.7 nm [1], which reveals the “working” matching relation (mel/nvm) = 1 and not larger. Specifically, accepting this relation and H ≈ 3.1 nm, we get Each “allowed/working” phonon can promote the Fermi electron
  • hyperthermia with the help of gold nanoparticles [1]. The case (iv) might seem plausible (albeit similarly “useless”); the consideration against it is that a transversal phonon will likely be “out of resonance” with the energy delivered by a longitudinal phonon, since their dispersion relations are different
  • , and the confinement-imposed energy quantization would likely prevent the necessary energy match of their respective nvmΔEvm values. Putting it differently, the major peaks in the densities of modes of transversal and longitudinal phonons in gold (and particularly in gold nanoparticles) are well
PDF
Album
Full Research Paper
Published 06 Jul 2016

Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

  • Anja Henning-Knechtel,
  • Matthew Wiens,
  • Mathias Lakatos,
  • Andreas Heerwig,
  • Frieder Ostermaier,
  • Nora Haufe and
  • Michael Mertig

Beilstein J. Nanotechnol. 2016, 7, 948–956, doi:10.3762/bjnano.7.87

Graphical Abstract
  • hybrid structures. Keywords: gold nanoparticles; dielectrophoresis; DNA nanotechnology; DNA origami; self-assembly; Introduction The DNA origami method facilitates high throughput synthesis of identical and fully addressable two- (2D) or three-dimensional (3D) nanoscaled structures [1][2][3]. Such DNA
  • electrodes confirming that the trapping only occurs in the presence of an electrical field. We then conjugated 15 nm gold nanoparticles to oligonucleotides with a poly(T) sequence, and further attached them to the ten double-sticky-end locations along the DNA nanostructure through hybridization. Figure 4b
  • shows transmission electron microscopy (TEM) images of representative functionalized DNA origami structures. The resulting structures contained eight to ten gold nanoparticles at the sticky-end locations along the 6HBs with a yield of 89%. The experiments with voltage and frequency sweeps demonstrate
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2016
Other Beilstein-Institut Open Science Activities