Search results

Search for "ion beam" in Full Text gives 214 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Customized MFM probes with high lateral resolution

  • Óscar Iglesias-Freire,
  • Miriam Jaafar,
  • Eider Berganza and
  • Agustina Asenjo

Beilstein J. Nanotechnol. 2016, 7, 1068–1074, doi:10.3762/bjnano.7.100

Graphical Abstract
  • , either by using focused ion beam (FIB) milled tips [1][2], electron beam deposited tips [3][4] or stencil-deposited metal dots onto an AFM tip [5]. Following a different approach, probes with carbon nanotubes (CNTs) have been fabricated for MFM imaging either by mechanical attachment [6][7][8] or direct
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2016

Role of solvents in the electronic transport properties of single-molecule junctions

  • Katharina Luka-Guth,
  • Sebastian Hambsch,
  • Andreas Bloch,
  • Philipp Ehrenreich,
  • Bernd Michael Briechle,
  • Filip Kilibarda,
  • Torsten Sendler,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Artur Erbe and
  • Elke Scheer

Beilstein J. Nanotechnol. 2016, 7, 1055–1067, doi:10.3762/bjnano.7.99

Graphical Abstract
  • Katharina Luka-Guth Sebastian Hambsch Andreas Bloch Philipp Ehrenreich Bernd Michael Briechle Filip Kilibarda Torsten Sendler Dmytro Sysoiev Thomas Huhn Artur Erbe Elke Scheer Physics Department, University of Konstanz, D-78457 Konstanz, Germany Institute of Ion Beam Physics and Materials Research
PDF
Album
Full Research Paper
Published 22 Jul 2016

Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor

  • Julia Körner,
  • Christopher F. Reiche,
  • Thomas Gemming,
  • Bernd Büchner,
  • Gerald Gerlach and
  • Thomas Mühl

Beilstein J. Nanotechnol. 2016, 7, 1033–1043, doi:10.3762/bjnano.7.96

Graphical Abstract
  • (≈10−5 mbar). First, the cantilever was shortened via focused ion beam milling to increase its resonance frequency. This step also increased the stiffness of the cantilever to about 133.8 N/m (see Table 1) which is rather high compared to typical values in cantilever magnetometry. In a second step, an
PDF
Album
Full Research Paper
Published 18 Jul 2016

Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response

  • Morten Slyngborg,
  • Yao-Chung Tsao and
  • Peter Fojan

Beilstein J. Nanotechnol. 2016, 7, 914–925, doi:10.3762/bjnano.7.83

Graphical Abstract
  • beam lithography or focused ion beam milling, which both are expensive and time consuming methods. Large-scale fabrication of PCMs have been attempted to some degree applying different approaches such as glancing angle deposition [28], scaffold ornamentation [29][30], individual chiral nanoparticles
  • CD response at = 0° has also been observed by ECMs produced with focused ion beam milling [13]. The ECM property that allows for the measurement of the enantiomeric structures from one sample, yields several advantages over PCMs in biosensor applications: 1) PCMs require fabrication of the two
  • broad signal [13]. This is presumably related to the heterogeneity and 3D nature of the ECM structures, which is less dominant in the hole arrays fabricated by focused ion beam lithography. In spite of this, the CD linewidths of the present ECMs are comparable to those of gammadion PCMs, which have been
PDF
Album
Full Research Paper
Published 24 Jun 2016

Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers

  • Kai Rückriem,
  • Sarah Grotheer,
  • Henning Vieker,
  • Paul Penner,
  • André Beyer,
  • Armin Gölzhäuser and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2016, 7, 852–861, doi:10.3762/bjnano.7.77

Graphical Abstract
  • with a Carl Zeiss Orion Plus®. The helium ion beam was operated at acceleration voltages between 34 and 35 kV and at currents between 0.2 and 0.3 pA. The working distance was about 11 mm at a sample tilt of 30°. Secondary electrons were collected by an Everhart–Thornley detector at 500 V grid voltage
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2016

Microscopic characterization of Fe nanoparticles formed on SrTiO3(001) and SrTiO3(110) surfaces

  • Miyoko Tanaka

Beilstein J. Nanotechnol. 2016, 7, 817–824, doi:10.3762/bjnano.7.73

Graphical Abstract
  • structure is also reported with samples annealed in UHV at comparatively low temperatures [34][35][36] and matches with our results. However, crystal deformation presumably due to ion-beam thinning is also observed in our case [25]. When Fe was deposited on these surfaces, Fe nanoparticles of similar sizes
  • with local depletion of O−, which was caused during sample preparation by ion-beam bombardment and UHV annealing. These surface charges, which induce an electric field variation at the interface, could affect the local interfacial reactivity [64][65] and hence the position of each deposited atom. It is
PDF
Album
Full Research Paper
Published 07 Jun 2016

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
  • – into thin films. Such antidots act as an inner surface of the materials leading to strong variations of optical [1][2], electrical [3][4], superconducting [5][6], or magnetic properties [7]. Nowadays, top-down approaches like e-beam lithography [8][9] or focused ion beam milling (FIB) [10] and bottom
PDF
Album
Full Research Paper
Published 24 May 2016

Cantilever bending based on humidity-actuated mesoporous silica/silicon bilayers

  • Christian Ganser,
  • Gerhard Fritz-Popovski,
  • Roland Morak,
  • Parvin Sharifi,
  • Benedetta Marmiroli,
  • Barbara Sartori,
  • Heinz Amenitsch,
  • Thomas Griesser,
  • Christian Teichert and
  • Oskar Paris

Beilstein J. Nanotechnol. 2016, 7, 637–644, doi:10.3762/bjnano.7.56

Graphical Abstract
  • actuation experiment was prepared with focused ion beam (FIB) cutting using an AURIGA Crossbeam Workstation (Zeiss). Scanning electron microscopy (SEM) images of the sample cross-section were taken with the same instrument with the electron microscope operated at a voltage of 2 keV. GISAXS: measurements and
PDF
Album
Full Research Paper
Published 28 Apr 2016

Hydration of magnesia cubes: a helium ion microscopy study

  • Ruth Schwaiger,
  • Johannes Schneider,
  • Gilles R. Bourret and
  • Oliver Diwald

Beilstein J. Nanotechnol. 2016, 7, 302–309, doi:10.3762/bjnano.7.28

Graphical Abstract
  • , for both types of samples (i.e., when the indium foil was used as received or subjected to vacuum drying prior to imaging). The cubes selected for the measurements had an estimated maximum tilt angle of 30° relative to the incident ion beam. This does not change the edge length increase factor (L2/L1
  • not be avoided. In addition, fluctuations in the beam current may have occurred. However, the contrast changes observed may also be indicative of chemical modifications; since SEs in the HIM are generated almost exclusively from the primary ion beam, they carry information about the surface chemistry
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2016

Nanoscale rippling on polymer surfaces induced by AFM manipulation

  • Mario D’Acunto,
  • Franco Dinelli and
  • Pasqualantonio Pingue

Beilstein J. Nanotechnol. 2015, 6, 2278–2289, doi:10.3762/bjnano.6.234

Graphical Abstract
  • behavior can be obtained by sliding loads on unpaved roads, ski slopes and rail tracks. Similarly, ion-beam sputtering on metal or semiconductor substrates can produce ripples on the microscale and nanoscale. The first example, reported in the literature, showed that low energy ion erosion of glass
  • patterns can be tuned by varying the energy of the ions and ranges from a few tens of nanometers up to a few micrometers, with ion beam energies ranging from 0.1 to 100 keV. In particular two types of patterns are observed: ripples oriented either parallel or perpendicular to the direction of the ion beam
PDF
Album
Review
Published 02 Dec 2015

Near-field visualization of plasmonic lenses: an overall analysis of characterization errors

  • Jing Wang,
  • Yongqi Fu,
  • Zongwei Xu and
  • Fengzhou Fang

Beilstein J. Nanotechnol. 2015, 6, 2069–2077, doi:10.3762/bjnano.6.211

Graphical Abstract
  • elliptical slits. The focusing performance of the structures was studied before [22]. The structures can be fabricated and measured by using focused ion beam (FIB) direct writing technique and near-field scanning optical microscope (NSOM) respectively, as shown in Figure 1. However, from the point of view of
  • the sample, and θ is the tilt angle of the sample. FIB nanofabrication error Stigmation Stigmation is generated in the ion column of the FIB machine due to asymmetrical voltage applied on the stigmator consisting of octopole electrodes. The ion beam is distorted due to the asymmetrical voltage
  • distribution on the electrodes. The energy spreading is asymmetrical and produces an elliptical spot of the ion beam instead of the normal circular spot. Theoretically, it can be expressed as Equation 1 [28]: where B is the magnetic field, q is the velocity of an ion, M is the mass, V is the accelerating
PDF
Album
Full Research Paper
Published 26 Oct 2015

Focused particle beam-induced processing

  • Michael Huth and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1883–1885, doi:10.3762/bjnano.6.191

Graphical Abstract
  • direction, Yuri Petrov and Oleg Vyvenko have exploited reflected helium ions for high-resolution imaging with “chemical contrast” [11]. Hongzhou Zhang and coworkers have utilized a focused helium ion beam to modify and mill thin silicon foils [12], which constitutes pioneering work in HIM towards
PDF
Editorial
Published 09 Sep 2015

Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

  • Sanghoon Ji,
  • Waqas Hassan Tanveer,
  • Wonjong Yu,
  • Sungmin Kang,
  • Gu Young Cho,
  • Sung Han Kim,
  • Jihwan An and
  • Suk Won Cha

Beilstein J. Nanotechnol. 2015, 6, 1805–1810, doi:10.3762/bjnano.6.184

Graphical Abstract
  • deposited on BECs with different thicknesses, whose cross-sectional microstructure was investigated by focused ion beam and field emission scanning electron microscopy (FIB/FE-SEM) imaging: the BECs were 40 nm and 320 nm in thickness. In case of the thinner BEC, a significant amount of ALD YSZ certainly
  • -deposited (ALD) yttria-stabilized zirconia (YSZ) electrolyte and 60 nm-thick top electrode catalyst (sputtered porous Pt cathode). (A) Focused ion beam-prepared field emission scanning electron microscopy (FE-SEM) cross-sectional images for 50 nm-thick ALD YSZ films deposited on 80 nm pore AAO supported 40
PDF
Album
Full Research Paper
Published 27 Aug 2015

Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation

  • Arnaud Caron and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2015, 6, 1721–1732, doi:10.3762/bjnano.6.176

Graphical Abstract
  • metallic glass samples and relate them to our results. We will then discuss alternative concepts leading to homogeneous flow and finally the role of strain rates. The investigation of the plastic flow of micro- and nano-fabricated test samples prepared from metallic glasses by focus ion beam (FIB) with
PDF
Album
Full Research Paper
Published 13 Aug 2015

Imaging of carbon nanomembranes with helium ion microscopy

  • André Beyer,
  • Henning Vieker,
  • Robin Klett,
  • Hanno Meyer zu Theenhausen,
  • Polina Angelova and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1712–1720, doi:10.3762/bjnano.6.175

Graphical Abstract
  • partial and a fully covered opening. CNM charging due to the positively charged He+ ion beam and the emission of negatively charged secondary electrons can only result in positive charging regardless of the secondary electron yield of the CNMs. A positively charged sample will hinder the emission of
  • , which was demonstrated with CNMs. Experimental Helium ion microscopy (HIM) was performed with a Carl Zeiss Orion Plus® microscope. The helium ion beam was operated at a current between 0.1–2.7 pA. The secondary electrons were collected by an Everhart–Thornley detector at 500 V grid voltage. For some
PDF
Album
Supp Info
Full Research Paper
Published 12 Aug 2015

Atomic scale interface design and characterisation

  • Carla Bittencourt,
  • Chris Ewels and
  • Arkady V. Krasheninnikov

Beilstein J. Nanotechnol. 2015, 6, 1708–1711, doi:10.3762/bjnano.6.174

Graphical Abstract
  • , France Department of Applied Physics, Aalto University, Finland Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden-Rossendorf, Germany 10.3762/bjnano.6.174 Keywords: carbon; first-principles simulations; interface; nanomaterials; nanoscale; oxides; spectromicroscopy; While
PDF
Editorial
Published 10 Aug 2015

Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

  • Aleksandra Szkudlarek,
  • Alfredo Rodrigues Vaz,
  • Yucheng Zhang,
  • Andrzej Rudkowski,
  • Czesław Kapusta,
  • Rolf Erni,
  • Stanislav Moshkalev and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1508–1517, doi:10.3762/bjnano.6.156

Graphical Abstract
  • at room temperature was shown by Chiang et al. [36]. It led to 99 atom % pure Cu films. H2/Ar microplasma-assisted FEBID increased the Cu content from 12 atom % to 41 atom % but also caused extended halo deposits [39]. Ga+ ion beam deposition showed that heating the substrate surface has a crucial
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Jul 2015

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
  • acceleration voltages did not result in measureable EBIC in our setup. A cross-section lamella of the sample was prepared by means of a focused ion beam microscope. An EBIC scan across the p–n interface is shown in Figure 3b, together with a simulated EBIC linescan, taking into account only the generation
PDF
Album
Full Research Paper
Published 07 Jul 2015

Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition

  • Klara Altintoprak,
  • Axel Seidenstücker,
  • Alexander Welle,
  • Sabine Eiben,
  • Petia Atanasova,
  • Nina Stitz,
  • Alfred Plettl,
  • Joachim Bill,
  • Hartmut Gliemann,
  • Holger Jeske,
  • Dirk Rothenstein,
  • Fania Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2015, 6, 1399–1412, doi:10.3762/bjnano.6.145

Graphical Abstract
  • 1.0 ns allowed for high mass resolution. The primary ion beam was rastered across a 500 × 500 µm2 field of view on the sample, and 128 × 128 data points were recorded. Primary ion doses were kept below 1011 ions/cm2 (static SIMS limit). The spectra were calibrated against C−, CH−, CH2−, and Au-, or on
PDF
Album
Full Research Paper
Published 25 Jun 2015

Scalable, high performance, enzymatic cathodes based on nanoimprint lithography

  • Dmitry Pankratov,
  • Richard Sundberg,
  • Javier Sotres,
  • Dmitry B. Suyatin,
  • Ivan Maximov,
  • Sergey Shleev and
  • Lars Montelius

Beilstein J. Nanotechnol. 2015, 6, 1377–1384, doi:10.3762/bjnano.6.142

Graphical Abstract
  • taken using a Nova NanoLab 600 Dual Beam focused ion beam and scanning electron microscope (FIB-SEM) from FEI Company (Hillsboro, Oregon, USA). The images were taken with an immersion lens at an acceleration voltage of 30 kV and a beam current of 2.4 nA. AFM images were obtained using a Multimode VIII
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2015

Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

  • Luis A. Rodríguez,
  • Lorenz Deen,
  • Rosa Córdoba,
  • César Magén,
  • Etienne Snoeck,
  • Bert Koopmans and
  • José M. De Teresa

Beilstein J. Nanotechnol. 2015, 6, 1319–1331, doi:10.3762/bjnano.6.136

Graphical Abstract
  • with a width of 250 nm and nominal thicknesses of 10 and 45 nm were fabricated using a focused Ga+ ion beam and standard lift-out procedures in an FEI Helios 600 Nanolab. The slices were cut perpendicular to the nanowire length to analyze their cross-sectional width profile. The morphology and
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2015

Structural transitions in electron beam deposited Co–carbonyl suspended nanowires at high electrical current densities

  • Gian Carlo Gazzadi and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2015, 6, 1298–1305, doi:10.3762/bjnano.6.134

Graphical Abstract
  • Strata DB235M) combining a Ga-ion focused ion beam (FIB) with a thermal field emission SEM, equipped with a Co–carbonyl (Co2(CO)8) GIS operated at room temperature (RT). The GIS is mounted at a polar angle of 52° and an azimuthal angle of 115° with respect to the sample surface. An injection nozzle with
PDF
Album
Full Research Paper
Published 11 Jun 2015

Magnetic properties of iron cluster/chromium matrix nanocomposites

  • Arne Fischer,
  • Robert Kruk,
  • Di Wang and
  • Horst Hahn

Beilstein J. Nanotechnol. 2015, 6, 1158–1163, doi:10.3762/bjnano.6.117

Graphical Abstract
  • newly developed UHV cluster ion beam deposition apparatus, which is described elsewhere [2]. Fe clusters are produced in a Haberland-type magnetron sputtering/gas aggregation cluster source. Extracted anions are accelerated by electrostatic lenses and mass-separated in a 90° sector magnet. The mass
  • energy-filtered transmission electron microscopy (EFTEM) and scanning transmission electron microscopy (STEM) micrographs of the Fe distribution for a 10 vol % Fe1000/Cr sample, specifically prepared for TEM. To avoid subsequent focused ion beam cutting and possible oxidation, the sample was deposited on
PDF
Album
Letter
Published 13 May 2015

Scanning reflection ion microscopy in a helium ion microscope

  • Yuri V. Petrov and
  • Oleg F. Vyvenko

Beilstein J. Nanotechnol. 2015, 6, 1125–1137, doi:10.3762/bjnano.6.114

Graphical Abstract
  • to make the ion beam paths visible. The detection of SEs excited from the conductive sample occurred when the bias was switched off, as the SEs excited from the conductive sample exceeded the signal of the RI-to-SE converter. For insulating samples, the SE signal from the sample could not be detected
  • estimation of the divergence angle of the He-ion beam from the pixel size and the depth of focus. The depth of focus is defined as the distance between the edges of the in-focused part of the image plane divided by the tangent of the grazing angle. From the image in Figure 2, the depth of focus can be
  • details of the calculation procedure will be described in the next section. Discussion Contrast formation in scanning reflection ion microscopy The results presented in the previous sections showed that imaging using an incident ion beam at low grazing angles exhibits following properties: RI detection is
PDF
Album
Full Research Paper
Published 07 May 2015

High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

  • Yves Fleming and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2015, 6, 1091–1099, doi:10.3762/bjnano.6.110

Graphical Abstract
  • crystal orientation and the local angle of incidence of the ion beam influence local sputter yields [6]. In case the sample is constituted of different materials, the situation is worsened due to preferential sputtering phenomena. As a consequence, the produced 3D images are affected by uncertainties on
  • instrument based on a Cameca NanoSIMS 50 is presented in detail elsewhere [6][7]. The sample was sputtered with a Cs+ primary ion beam at 16 keV impact energy, normal incidence and sample currents between 1.4 and 2.5 pA. The raster frame was set to 256 × 256 pixels. Depending on the analysis, the dwell time
  • in Figure 4d, it is clearly noticeable that the topography of the TaN structure is changing. Due to the higher impact angle of the primary ion beam on the ridge’s edge compared to the ridge’s top surface or the trenches, the erosion rate is considerably higher in this area. The ridges therefore
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2015
Other Beilstein-Institut Open Science Activities