Search results

Search for "microstructures" in Full Text gives 149 result(s) in Beilstein Journal of Nanotechnology.

Self-organization of mesoscopic silver wires by electrochemical deposition

  • Sheng Zhong,
  • Thomas Koch,
  • Stefan Walheim,
  • Harald Rösner,
  • Eberhard Nold,
  • Aaron Kobler,
  • Torsten Scherer,
  • Di Wang,
  • Christian Kübel,
  • Mu Wang,
  • Horst Hahn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 1285–1290, doi:10.3762/bjnano.5.142

Graphical Abstract
  • Microstructures, Nanjing University, Nanjing 21009, China Helmholtz Institute Ulm Electrochemical Energy Storage, Albert-Einstein-Allee 11, 89081 Ulm, Germany Herbert Gleiter Institute of Nanoscience, NUST, Nanjing 21009, China 10.3762/bjnano.5.142 Abstract Long, straight mesoscale silver wires have been
  • wires as building blocks for microelectronics requires good chemical stability, especially the stability against oxidation under ambient conditions. For most metallic microstructures, however, stability against oxidation is a challenge. The reason is that reducing the length scale means increasing the
PDF
Album
Full Research Paper
Published 15 Aug 2014

Dry friction of microstructured polymer surfaces inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe,
  • Elena Fadeeva and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1091–1103, doi:10.3762/bjnano.5.122

Graphical Abstract
  • were compared to those obtained on other types of surface microstructure: (i) smooth ones, (ii) rough ones, and (iii) ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that
  • this snake lives in habitats with a relatively wide variety of substrates and therefore the skin modifications are presumably adapted for locomotion not just for one type of substrate. The microstructures on ventral scales are regular tooth-like shaped caudally-oriented (parallel to the body axis of
  • asperities of both contacting surfaces [36][37][38]. This approach of investigating the contribution of different geometries and dimensions of microstructures to the friction coefficient was chosen, because the complex phenomenon of friction cannot be reduced to a single mechanism: It is rather a result of
PDF
Album
Full Research Paper
Published 21 Jul 2014

Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths

  • Elena Gorb,
  • Sandro Böhm,
  • Nadine Jacky,
  • Louis-Philippe Maier,
  • Kirstin Dening,
  • Sasha Pechook,
  • Boaz Pokroy and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2014, 5, 1031–1041, doi:10.3762/bjnano.5.116

Graphical Abstract
  • and microrough substrates, many insects use highly specialised adhesive pads, which may be located on different parts of the leg and are of two different types: smooth and setose (hairy) [2][3]. Due to the material flexibility of smooth pads and fine fibrillar surface microstructures (tenent setae
PDF
Album
Full Research Paper
Published 14 Jul 2014

Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure

  • Lars Heepe,
  • Alexander E. Kovalev and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 903–909, doi:10.3762/bjnano.5.103

Graphical Abstract
  • , M.; Gorb, S. J. R. Soc., Interface 2008, 5, 383–385] proposed to explain the strong underwater adhesion of mushroom-shaped adhesive microstructures (MSAMSs). For this purpose, we measured the pull-off forces of individual MSAMSs by detaching them from a glass substrate under different wetting
  • than by cavitation. These results obtained due to the high-speed visualisation of the contact behavior at nanoscale-confined interfaces allow for a microscopic understanding of the underwater adhesion of MSAMSs and may aid in further development of artificial adhesive microstructures for applications
  • different potential applications (e.g., in robotic systems, medicine, and industrial pick-and-place processes), due to the reversible and residue-free character of the sticking mechanism [1][2][3][4]. So far, the most promising candidates for technical applications are surface microstructures with mushroom
PDF
Album
Full Research Paper
Published 25 Jun 2014

Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

  • Matthias J. Mayser,
  • Holger F. Bohn,
  • Meike Reker and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2014, 5, 812–821, doi:10.3762/bjnano.5.93

Graphical Abstract
  • architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method
  • before and after removal of the air layer its volume was calculated. Surface characteristics of Salvinia and replicas The surface microstructures of both technical and biological surfaces were visualised by scanning electron microscopy (SEM). The wafer replicas were coated with gold by a sputter coater
PDF
Album
Full Research Paper
Published 10 Jun 2014

The surface microstructure of cusps and leaflets in rabbit and mouse heart valves

  • Xia Ye,
  • Bharat Bhushan,
  • Ming Zhou and
  • Weining Lei

Beilstein J. Nanotechnol. 2014, 5, 622–629, doi:10.3762/bjnano.5.73

Graphical Abstract
  • adhesion, and drag reduction. Therefore, studying the surfaces of natural organisms is extremely important and significant. Moreover, results of this study could have a substantial effect on the manufacturing of artificial biological products. During the past decade, the special surface microstructures of
  • plant leaves have been studied beginning with the lotus leaf [1][2][3]. Researchers then studied the microstructures of the India canna leaf, the rice leaf, and the leaf of Colocasia esculenta [4][5]. Subsequently, the study of surface microstructures expanded to animals. Researchers studied surface
  • microstructures of the water skipper’s leg, the moth’s eye, shark skin, the darkling beetle, and the cicada’s wing [6][7][8][9][10][11][12][13][14][15]. At the same time, the relationship between superhydrophobicity and surface microstructures attracted strong interest. A large number of surfaces with all kinds
PDF
Album
Full Research Paper
Published 13 May 2014

Hairy suckers: the surface microstructure and its possible functional significance in the Octopus vulgaris sucker

  • Francesca Tramacere,
  • Esther Appel,
  • Barbara Mazzolai and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 561–565, doi:10.3762/bjnano.5.66

Graphical Abstract
  • this work is the presence of hairs on the acetabular protuberance. This is of particular interest because to the best of our knowledge, these microstructures are unknown in the literature. Moreover, the presence of such hierarchical hairs on the entire surface of the acetabular protuberance supports
  • ) exploiting the high bulk modulus of water between the sucker and substrate that resists tensile stress (detachment force). Moreover, some studies on artificial materials have demonstrated that fibrillar microstructures are preferred to flat surfaces in applications in which a total attachment force must be
PDF
Album
Letter
Published 02 May 2014

Friction behavior of a microstructured polymer surface inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 83–97, doi:10.3762/bjnano.5.8

Graphical Abstract
  • Martina J. Baum Lars Heepe Stanislav N. Gorb Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1–9, Kiel 24098, Germany 10.3762/bjnano.5.8 Abstract The aim of this study was to understand the influence of microstructures found on ventral scales
  • morphological data [17], snake-inspired microstructured polymer surfaces (SIMPS) [18] were developed (Figure 1c). Such an implementation of the surface geometry, similar to biological microstructures of the snake, into a mechanically and chemically well-defined polymeric material, epoxy resin [19], enabled us a
  • counterpart (substrate) was kept constant, enabling us to investigate the influence of different surface topographies of polymer samples on the stick-slip phenomenon and on the frictional behavior in general. The different types of samples bear microstructures in comparable dimensions to those of the snake
PDF
Album
Full Research Paper
Published 24 Jan 2014

Electrochemical and electron microscopic characterization of Super-P based cathodes for Li–O2 batteries

  • Mario Marinaro,
  • Santhana K. Eswara Moorthy,
  • Jörg Bernhard,
  • Ludwig Jörissen,
  • Margret Wohlfahrt-Mehrens and
  • Ute Kaiser

Beilstein J. Nanotechnol. 2013, 4, 665–670, doi:10.3762/bjnano.4.74

Graphical Abstract
  • batteries. Note that the large Li2O2 particles in (B) appear to have a hollow structure with a smooth surface and nodular morphology. The scale bars correspond to 200 nm. First galvanostatic curve of a Li–O2 battery discharged up to 1000 mAh·(g carbon)−1. Microstructures of (A) discharged and (B) recharged
PDF
Album
Full Research Paper
Published 18 Oct 2013

Deformation-induced grain growth and twinning in nanocrystalline palladium thin films

  • Aaron Kobler,
  • Jochen Lohmiller,
  • Jonathan Schäfer,
  • Michael Kerber,
  • Anna Castrup,
  • Ankush Kashiwar,
  • Patric A. Gruber,
  • Karsten Albe,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2013, 4, 554–566, doi:10.3762/bjnano.4.64

Graphical Abstract
  • twin boundaries per grain. This has not been evident from classical DF-TEM (see Supporting Information File 1). The two sample sets examined here in detail, show different initial microstructures: the sample grown with slight compressive residual stress (Table 1) exhibits a higher twin density compared
  • a function of strain based on the ACOM-TEM (ncPd 1: red, ncPd 2: blue) and in-situ SXRD analysis (ncPd 3: black). Stress strain behavior and evolution of twin boundary density as a function of strain for grain sizes of 10 and 20 nm based on MD simulations. Two different initial microstructures are
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2013

Plasticity of nanocrystalline alloys with chemical order: on the strength and ductility of nanocrystalline Ni–Fe

  • Jonathan Schäfer and
  • Karsten Albe

Beilstein J. Nanotechnol. 2013, 4, 542–553, doi:10.3762/bjnano.4.63

Graphical Abstract
  • intragranular defects, what is consistent with expectations based on the small grain size. It has been shown for other material systems, that the energetic state of the GB, which is closely related to the GB free volume drastically influences the macroscopic mechanical properties of nc microstructures [18][19
PDF
Album
Full Research Paper
Published 19 Sep 2013

Nanoglasses: a new kind of noncrystalline materials

  • Herbert Gleiter

Beilstein J. Nanotechnol. 2013, 4, 517–533, doi:10.3762/bjnano.4.61

Graphical Abstract
  • properties by modifying their defect microstructures and/or their chemical microstructures. Figure 1 displays the remarkable enhancement of the diffusivities of Cu, Ni and Pd by varying the defect microstructure by means of introducing a high density of incoherent interfaces [1]. The modification of the
  • not yet been utilized to a similar extent. The main reason is that, so far, glasses are produced by quenching the melt and/or the vapor. Obviously, this approach does not permit the introduction of defect microstructures (e.g., similar to grain boundaries, Figure 1) or chemical microstructures (e.g
  • ., similar to the one shown in Figure 2). As a consequence, one cannot control the properties of today’s glasses by the controlled modification of their defect and/or chemical microstructures. It is the idea of nanoglasses to generate a new kind of glass that will allow us to modify the defect and/or the
PDF
Album
Review
Published 13 Sep 2013
Graphical Abstract
  • aqueous solvents [102]. Given the extreme versatility of etched ion-track membranes, future electrochemical growth of Si nanowires would allow tuning size parameters and provide interesting freestanding high-aspect ratio Si nano- or microstructures [103]. 2.6 Segmented nanowires Besides synthesizing
PDF
Album
Review
Published 17 Dec 2012

Colloidal lithography for fabricating patterned polymer-brush microstructures

  • Tao Chen,
  • Debby P. Chang,
  • Rainer Jordan and
  • Stefan Zauscher

Beilstein J. Nanotechnol. 2012, 3, 397–403, doi:10.3762/bjnano.3.46

Graphical Abstract
  • -initiated atom-transfer radical polymerization (SI-ATRP) to fabricate patterned polymer-brush microstructures. The advantages of the CL technique over other lithographic approaches for the fabrication of patterned polymer brushes are (i) that it can be carried out with commercially available colloidal
  • atom-transfer radical polymerization (SI-ATRP) for patterning polymer-brush microstructures. The use of CL for patterning polymer brushes has significant advantages over the lithographic approaches mentioned above, in that it employs commercially available, relatively low cost nano- and microspheres
  • patterning of colloidal microspheres for the fabrication of polymer-brush microstructures. We first assembled a SMM of polystyrene latex (diameter ≈ 10 µm) on a silica substrate by gravity-induced sedimentation combined with solvent evaporation [26], and subsequently we deposited gold into the interstices
PDF
Album
Full Research Paper
Published 15 May 2012

Mesoporous MgTa2O6 thin films with enhanced photocatalytic activity: On the interplay between crystallinity and mesostructure

  • Jin-Ming Wu,
  • Igor Djerdj,
  • Till von Graberg and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2012, 3, 123–133, doi:10.3762/bjnano.3.13

Graphical Abstract
  • contributes greatly to the MgTa2O6 film with microstructures favoring the photocatalytic property. Besides the ordered mesoporous structure, the randomly distributed round concave areas with depths of ca. 60 nm might further contribute to the photocatalytic activity. Compared to the generally achieved ordered
PDF
Album
Supp Info
Video
Full Research Paper
Published 13 Feb 2012

Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata)

  • Bettina Prüm,
  • Robin Seidel,
  • Holger Florian Bohn and
  • Thomas Speck

Beilstein J. Nanotechnol. 2012, 3, 57–64, doi:10.3762/bjnano.3.7

Graphical Abstract
  • . Independent of superimposed microstructures we found that convex and papillate epidermal cell shapes slightly enhance the attachment ability of the beetles. Thus, in plant surfaces, cell shape and superimposed microstructuring yield contrary effects on the attachment of the Colorado potato beetle, with convex
  • (Diospyros kaki (i+wc), Paeonia suffruticosa (ii+wc) and Colocasia esculenta (iii+wc)), and plant surfaces showing cuticular folds similar in size (Hevea brasiliensis (i+cf), Vitis vinifera (ii+cf) and Rosa hybrid Floribunda cv. “Sarabande” (iii+cf)). For dimensions of the superimposed microstructures of the
PDF
Album
Video
Full Research Paper
Published 23 Jan 2012

Surface induced self-organization of comb-like macromolecules

  • Konstantin I. Popov,
  • Vladimir V. Palyulin,
  • Martin Möller,
  • Alexei R. Khokhlov and
  • Igor I. Potemkin

Beilstein J. Nanotechnol. 2011, 2, 569–584, doi:10.3762/bjnano.2.61

Graphical Abstract
  • are specific for systems with two characteristic length scales corresponding to the lengths of the backbone and side chains. The existence of these abrupt changes implies that systems with two different scales can form periodic microstructures that are of great interest for potential applications
  • between the backbone and the LC side chains is achievable, but the period of the microstructures is strongly limited by the length of the spacer between adjacent LC side chains. Coil-comb architecture allows better control of this parameter and the symmetry of the phases, and thus attracts more attention
PDF
Album
Full Research Paper
Published 12 Sep 2011

Self-organizing bioinspired oligothiophene–oligopeptide hybrids

  • Alexey K. Shaytan,
  • Eva-Kathrin Schillinger,
  • Elena Mena-Osteritz,
  • Sylvia Schmid,
  • Pavel G. Khalatur,
  • Peter Bäuerle and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2011, 2, 525–544, doi:10.3762/bjnano.2.57

Graphical Abstract
  • segments in the peptide moieties were still intact [19][27]. The solution was spin-coated on the mica substrate and well-defined microstructures were visualized by means of AFM (Figure 3). The fibrillar structures exhibit single object widths of about 12 ± 1 nm (not tip corrected), with height maxima of 3
  • respect to their geometry as well. They showed lengths of 100–200 nm, widths of 6–8 (±2) nm and heights of 0.4–0.7 (±0.2) nm. Compared to the fibers obtained in the kinked state of the molecule, 6' (Figure 6), the microstructures found for the fully stretched out peptide, 6, seem to be, by far, less self
  • , differs profoundly. Whereas the kinked hybrids, 6', seem to self-assemble in such a way that the intermolecular noncovalent interacting forces are fully saturated, i.e., the formed microstructures do not make use of any unsaturated sites for, e.g., hydrogen bonding, the stretched out state of the peptide
PDF
Album
Review
Published 05 Sep 2011

Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films

  • Luyang Han,
  • Ulf Wiedwald,
  • Johannes Biskupek,
  • Kai Fauth,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 473–485, doi:10.3762/bjnano.2.51

Graphical Abstract
  • under a H2 atmosphere, and the resulting variations of their structure, morphology and magnetic properties were characterized. We observed pronounced differences in the diffusion and alloying of Co nanoparticles on Pt films with different orientations and microstructures. On textured Pt(111) films
PDF
Album
Video
Full Research Paper
Published 23 Aug 2011

Simple theoretical analysis of the photoemission from quantum confined effective mass superlattices of optoelectronic materials

  • Debashis De,
  • Sitangshu Bhattacharya,
  • S. M. Adhikari,
  • A. Kumar,
  • P. K. Bose and
  • K. P. Ghatak

Beilstein J. Nanotechnol. 2011, 2, 339–362, doi:10.3762/bjnano.2.40

Graphical Abstract
  • have been investigated. The magneto-photoemission has been studied in subsection 4. The subsection 5 includes six different applications of this paper in the field of superlattices and microstructures in general. Theoretical Background 1 The formation of photoemission from effective mass quantum well
PDF
Album
Full Research Paper
Published 06 Jul 2011

Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials

  • Anna J. Schulte,
  • Damian M. Droste,
  • Kerstin Koch and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 228–236, doi:10.3762/bjnano.2.27

Graphical Abstract
  • such a surface architecture requires two production steps. Firstly, the microstructures must be produced by moulding, lithography or in-print-techniques. Secondly, the nanostructure production requires expensive lithographic techniques, or self-assembling materials, such as metal oxides [9][21]. Some
  • microstructures. These surface microstructures cause optical signals [30][31] or function as a tactile cue for bees [32]. For us the “petal effect” or the repellence of petals seems to be a side effect and not the primary aim of the flower. A petal is a relatively short lived organ of plants, developed for
  • surfaces, the micropapillae with wax crystals [6] and micropapillae with cuticle folds. Some remarkable differences exist between the surface architecture of the lotus leaf and Viola petals. In Viola petals microstructures are larger (average height of 40.2 µm) than those of lotus leaves, which have
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2011

Sorting of droplets by migration on structured surfaces

  • Wilfried Konrad and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2011, 2, 215–221, doi:10.3762/bjnano.2.25

Graphical Abstract
  • ][7][8] that liquid droplets move towards areas of minimum contact angle if placed on a flat solid exhibiting a gradient of contact angle. Yang et al. [2] devised a hydrophobic micropatterned surface with a gradient in density of the microstructures that lead to droplet movement with maximum speeds of
PDF
Album
Full Research Paper
Published 20 Apr 2011

Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

  • Bharat Bhushan

Beilstein J. Nanotechnol. 2011, 2, 66–84, doi:10.3762/bjnano.2.9

Graphical Abstract
  • , and 850 μm, respectively. The spacing between the ribs was 180 µm. To investigate drag reduction efficiency on the surfaces with superhydrophobicity, self-cleaning, and low adhesion described earlier, Jung and Bhushan [21] used nano-, micro-, and hierarchical structures [12][13]. Microstructures were
  • ). Specimens with microstructures were immediately transferred into a vacuum chamber at 750 mTorr (100 Pa) pressure for 10 seconds to remove trapped air and to increase the resin infiltration through the structures. After hardening at room temperature (24 h at 22 °C), the positive replica was separated from
  • rapid cooling of the specimen to 5 °C. Then the specimens were stored for seven days at 21 °C in a desiccator. The fast cooling of the wax prevents the formation of nanostructure roughness. Figure 5 shows the SEM micrographs of nanostructure on flat replica, microstructures, and hierarchical structure
PDF
Album
Review
Published 01 Feb 2011

Flash laser annealing for controlling size and shape of magnetic alloy nanoparticles

  • Damien Alloyeau,
  • Christian Ricolleau,
  • Cyril Langlois,
  • Yann Le Bouar and
  • Annick Loiseau

Beilstein J. Nanotechnol. 2010, 1, 55–59, doi:10.3762/bjnano.1.7

Graphical Abstract
  • Damien Alloyeau Christian Ricolleau Cyril Langlois Yann Le Bouar Annick Loiseau Matériaux et Phénomènes Quantiques, UMR 7162, Bâtiment Condorcet, Case 7021, Université Paris 7 / CNRS, 75205 Paris Cedex 13, France, Phone : +33 1 57 27 69 83 Laboratoire d’Etude des Microstructures – Unité mixte
PDF
Album
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities