Search results

Search for "nanoparticle" in Full Text gives 734 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • , nanoparticle concentration, surface functionalization, and the type of polymers that can be processed. Keywords: ethyl cellulose; nanoemulsions; nanomedicine; phase inversion composition (PIC) method; PLGA; polymer nanoparticles; polyuria; polyurethane; surfactants; Review 1 Introduction The field of
  • the solvent can also be removed by selective diffusion [22]. The emulsion solvent evaporation method enables the use of biocompatible polymers, thermolabile compounds, and low-toxicity surfactants. The nanoparticle size can be tuned by formulation parameters and since the nanoparticles are directly
  • is the solvent/polymer bulk density ratio (this equation assumes that each droplet generates one single nanoparticle). In other words, the polymer nanoparticles seem to be, in general, less dense than in the bulk, which could be attributed to porosity generated during solvent evaporation
PDF
Album
Review
Published 13 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • induction depends on the density of NPs, where the effective density of Si NPs ranged from 1.57 to 1.72 g/cm3 [20]. The leakage rate increases with increasing nanoparticle density. They also showed that a force of approximately 1.8 nN/μm along the boundaries of VE-cad adherens junctions mediated by
PDF
Album
Review
Published 08 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • . The results presented here provide a biomimetic route to the single-step synthesis and assembly of SiO2 nanoparticles into colloidal gels or opal-like structures. Keywords: biocatalysis; biomimetics; nanoparticle; peptide; self-assembly; silica; Introduction Ordered structures of nanoparticles have
  • challenge is the difficulty in manipulating nanoparticles due to size-related constraints. The self-assembly of nanoparticles is mainly governed through intermolecular interactions [9]. The high nanoparticle/volume fractions required for large-scale applications may result in electrostatic repulsion or
  • coalescence and Ostwald ripening of the particles. Growth by coalescence and Ostwald ripening is a fundamental process that plays a dominant role in nanoparticle formation. In coalescence, two or more particles combine to form a larger particle, whereas in Ostwald ripening, small particles dissolve in a
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • disciplines, such as nanomaterials science, mechanical engineering, pharmacology, and clinical medicine. Nanoparticle (NP)-based therapeutics are uniquely able to improve drug loading efficiency, control drug release, and protect drug molecules against undesired degradation [1][2]. NPs are widely used in
  • nanoparticle with radiosensitizing activity, which showed better biocompatibility and tumor targeting after coating with a cancer cell membrane [77]. Volume and weight of tumors in mice treated with biomimetic NPs and irradiation were significantly reduced compared to those of mice treated with bare NPs. The
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • , gold nanoshells, and microbots) and imaging contrast nanoparticles (quantum dots and iron oxide), after homing into the tumor environment [113]. Xu et al. described an injectable nanoparticle generator (iNPG) showing substantial natural tumor tropism designed as aminopropyltriethoxysilane (APTES
  • toxicological profiles [134]. A systematic approach in synthesizing statistical copolymer libraries, fine-tuning nanoparticle biointeractions, and polymer bioresponsiveness, hand in hand with cell culture experiments for fast screening and dynamic cell culture models, may greatly improve the successful outcomes
  • task limited by extracellular and intracellular challenges. Combinatorial therapy further complicates the right-time, right-place co-delivery of siRNA with other active ingredients due to the differences in the physicochemical properties, delivery, and stability problems. The nanoparticle core for
PDF
Album
Review
Published 22 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • siRNA from the endosome. In another example, a supramolecular nanoparticle was prepared from a linear CyD-based polymer, hydrophilic polyethylene glycol bearing an adamantane at the end, and siRNA [64]. By attaching a human transferrin protein, this composite was steered to target cancer cells to
PDF
Album
Review
Published 09 Feb 2023

Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation

  • Vikas,
  • Raj Kumar and
  • Sanjeev Soni

Beilstein J. Nanotechnol. 2023, 14, 205–217, doi:10.3762/bjnano.14.20

Graphical Abstract
  • –11% increase in efficiency. Under NIR laser irradiation, the photothermal conversion efficiency increases with an increase in optical power. The findings will facilitate the selection of nanoparticle concentrations, irradiation source, and irradiation power for a variety of plasmonic photothermal
  • broadband light source and a near-infrared laser (for comparison). Gold nanospheres (GNSs) of 40 nm diameter and gold nanorods (GNRs) of sizes 25 × 47 nm, 10 × 38 nm, and 10 × 41 nm were examined. The photothermal conversion efficiency for these GNPs is reported for different nanoparticle concentrations and
  • . By combining Equation 2 and Equation 3, the energy balance equation becomes For a nanoparticle suspension, the specific heat capacity and total mass of GNPs are much smaller than those of water and can be neglected. Thus, by only considering the specific heat capacity of water (Cw = 4184 J·kg−1·K−1
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • of the apparent differences. Before performing ORR experiments in the RRDE system, cyclic voltammetry curves in N2-saturated 0.5 M H2SO4 were recorded. In cycling voltammetry experiments, materials A and B show signals characteristic of the platinum nanoparticle surface (Supporting Information File 1
  • the three columns, the results of HAADF, EDX, and HRTEM measurements are shown. Statistical analysis of Pt nanoparticle area distribution is shown in Supporting Information File 1, Figure S1. High-resolution XPS spectra of the Pt 4f band for (a) reference catalyst 20% Pt XC-72R and (b) sample A
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Batch preparation of nanofibers containing nanoparticles by an electrospinning device with multiple air inlets

  • Dong Wei,
  • Chengwei Ye,
  • Adnan Ahmed and
  • Lan Xu

Beilstein J. Nanotechnol. 2023, 14, 141–150, doi:10.3762/bjnano.14.15

Graphical Abstract
  • the fibers. When the air flow rate was 100 m3/h (Figure 3b), the adhesion between fibers was weakened, resulting in the decrease of average fiber diameter (719.28 ± 108.43 nm) and a reduction of nanoparticle agglomeration in the fibers. When the air flow rate was 50 m3/h (Figure 3c), there was almost
  • rate was 50 m3/h, only few microbubbles were generated, thus yielding ZnO/PAN nanofibers with uniform ZnO nanoparticle distribution. In addition, the influence of the spinning voltage on the EMAI processes as well as the quality and yield of ZnO/PAN nanofibers were investigated experimentally and
PDF
Album
Full Research Paper
Published 23 Jan 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • and significant to extend the previous research of Au–SiOx nanoflowers formed by an Au single layer to bilayers and explore potential fabrication parameters. In the present work, nanoflowers made of a core nanoparticle and surrounding SiOx NWs are synthesized from annealing thin Au/Ni bilayers with
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • seconds of exposure in the case of the Ag@PEG600DA coating (Figure 2a). As can be seen in Figure 2, AgNP synthesis is much faster in Ag@PEG600DA coatings than in the case of the PEG600DA/PETIA matrix. Indeed, as a diacrylate, PEG600DA offers less cross-linking sites than PETIA, which promotes nanoparticle
  • formation and coalescence during UV exposure. When comparing the absorbance spectra for both coatings after 15 s irradiation, the full-widths at half maximum (FMWH) are calculated to be 134 and 131 nm, for Ag@PEG600DA and Ag@PEG600DA/PETIA, respectively (Figure 2c). Consequently, the nanoparticle size
PDF
Album
Full Research Paper
Published 12 Jan 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • undecylenic (UA) acids, which are both used as a reagent and as a nanoparticle stabilizer, as well as the influence of their ratio to Fe(III) acetylacetonate on the properties of particles were investigated. Stable dispersions of NPM were obtained in 1-octadecene within the OA or UA ratio from 3.3 mol to 1
  • particle mass. The result is a significantly different resistance to oxidation of the nanoparticle inorganic cores. The core of the particles synthesized using oleic acid is composed of more than 90% of maghemite. When undecylenic acid is used for the synthesis, the core is composed of 75% of magnetite
  • reduction of nanoparticle diameter below the critical size of 25 nm leads to nanoparticles with superparamagnetic properties [10][11]. Due to the absence of coercive forces in superparamagnetic nanoparticles not exposed to an external magnetic field, they are characterized by good colloidal stability, which
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • -dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques were used to characterize nanoparticle development. The breast cancer cell line MCF-7 was used as a test model to study the cytotoxic behavior of Ag/AgCl nanoparticles and, as a counterpart, the nanoparticles were also
  • comparison to monocytes. Keywords: cancer cells; cytotoxic behavior; green synthesis; pineapple extract; silver chloride nanoparticles; silver nanoparticles; structural characterization; Introduction The study of metallic nanoparticle synthesis by green methods is gaining importance, especially in cases
  • . Therefore, as mentioned before, the temperature affects the generation of AgNPs. However, for this particular case, the temperature also contributes to the formation of AgCl nanoparticles. Spectroscopic characterization It is known that the interaction of light with free electrons in an Ag nanoparticle can
PDF
Album
Full Research Paper
Published 13 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • interaction between Au-LNPs and BDP. No obvious change of the zeta potentials of AB-LNPs was found in two different media after 7 days (Figure 3b), suggesting that AB-LNPs maintained the nanoparticle structure in PBS and RPMI-1640 + 10% FBS for 7 days. Drug release properties of AB-LNPs To investigate whether
  • laser-responsive release properties. In 4T1 cancer cells, AB-LNPs showed enhanced cellular uptake efficiency in comparison to BDP and synergistic photothermal effects. The simple and adaptive nanoparticle design may have great potential for the treatment of cancer and other diseases. The
PDF
Album
Full Research Paper
Published 02 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • orally applicable nanodrug formulations that can act against diseases seen in the distant region of the gastrointestinal tract (GIT), such as intestinal tumor, brings with it a series of difficulties depending on the drug and/or GIT physiology. The aim of this study is to develop an oral nanoparticle
  • drug delivery system loaded with docetaxel (DCX) as an anticancer drug, using poly(lactic-co-glycolic acid) (PLGA) as nanoparticle material, and modified with chitosan (CS) to gain mucoadhesive properties. In this context, an innovative nanoparticle formulation that can protect orally administered DCX
  • nanoparticles for experimental studies and dose calculations [45]. EE and DL of DCX-loaded nanoparticle formulations are documented in Table 2. The EE values of DCX-PLGA and CS/DCX-PLGA were 46.18% and 69.04%, respectively (p < 0.05). CS as a coating material led to an increase in encapsulation efficiency of
PDF
Album
Full Research Paper
Published 23 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • manufacturing time and the batch nature of production. For the hydrothermal technique, there is a danger of nanoparticle leakage, primarily in water, and the risk of toxic solvent emissions. Su et al. [54] reported the first hydrothermal fabrication of Bi5O7Br. Bi5O7Br rods of 50 μm length and 2 μm width were
PDF
Album
Review
Published 11 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • were almost forming a monolayer on the surface of the QCM electrode. Compared with the nonimprinted polymer nanoparticle (NIP) film, MIP nanoparticle films displayed higher adsorption ability for ʟ-histidine, which was approx. 5.8 times higher than that for ᴅ-histidine and 2.2 times higher than that
PDF
Album
Review
Published 27 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • suspension used for 5 min was almost five times less effective than the MNs [158]. Nanoparticle-loaded bilayer dissolving microneedle arrays for the sustained delivery of proteins to the posterior region of the eye were developed by Wu and co-workers (Figure 8). Ovalbumin, a model protein, was encapsulated
  • . S. Thakur, “Long-acting nanoparticle-loaded bilayer microneedles for protein delivery to the posterior segment of the eye“, pages 306-318, Copyright (2021), with permission from Elsevier. This content is not subject to CC BY 4.0. The hybrid detachable microneedle developed by Lee et al. Figure 9 was
PDF
Album
Review
Published 24 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • resinate. The suspension containing zinc resinate was then filtered and washed with hot distilled water to remove impurities. The zinc resinate was then calcined in a furnace with an increasing temperature rate of 5 °C/min to 600 °C and held for 30 min to obtain pure ZnO nanoparticle powder. The relevant
PDF
Album
Full Research Paper
Published 07 Oct 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • tumor [8]. This behavior might be exploited for targeting or evading specific cell types. In this context, the cell type also plays a crucial role [7]. Overall, looking at the differences exhibited by the use of different materials for nanoparticle preparation, the favorable Young’s modulus should be
  • were kept in deionized water and used on the same day. GNPs were incubated for 1 min to allow for a sufficient nanoparticle deposition without overloading the substrate surface. The supernatant was washed away with deionized water, and the samples were subsequently kept in liquid and measured on the
  • determined. The curve obtained during the AFM experiment is based on the piezo movement. The piezo movement is larger than the indentation into the nanoparticle as the cantilever bends to the opposite direction. This effect is corrected by the so-called tip–sample separation, leading to the actual
PDF
Album
Full Research Paper
Published 16 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • the Bi2WO6/TiO2-NT nanocomposites. The detailed mechanism was revealed in the hierarchical Ag2O-nanoparticle/TiO2-nanotube composite reported by our group [31]. As shown in Figure 4a, the HR-TEM image of the 70%−Bi2WO6/TiO2-NT nanocomposite shows two kinds of lattice fringes with interplanar spacings
  • shown in Supporting Information File 1, Table S3, in comparison with cellulose-derived Ag2O-nanoparticle/TiO2-nanotube (Ag2O-NP/TiO2-NT) composites [31], g-C3N4/TiO2- nanotube (g-C3N4/TiO2-NT) composites [32], and H3PW12O40/TiO2 nanocomposites [33] reported by our group, the hierarchical Bi2WO6/TiO2-NT
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • increasing number of nanoparticle collisions was obtained. It is known from the aforementioned literature that the properties of nanoparticles assist in enhancing the thermal conductive properties of base fluids. In a similar aspect, it was also found that hybridized nanoparticles considerably improve the
  • ., eicosane C20H42) media. Before conducting simulations, the nanoparticle was created using the Material Studio software (Accryles Inc., USA is the sole proprietor of the Material Studio software produced for performing material/chemical design and analysis). This particle was then dispersed in water and
  • constructed with 36 CuO molecules bonded by the COMPASS force field. This constructed nanoparticle size was 0.4 nm, as shown in Figure 1b. A molecular dynamics simulation of paraffin (i.e., eicosane C20H42) was also conducted for comparison with the aqueous solution. In the alkane/CuO nanofluid simulation
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • Cristian Radu Ioana D. Vlaicu Andrei C. Kuncser National Institute of Materials Physics, Magurele, Romania Faculty of Physics, University of Bucharest, Bucharest, Romania 10.3762/bjnano.13.51 Abstract A new methodology to obtain magnetic information on magnetic nanoparticle (MNP) systems via
  • : electron tomography; magnetite; Python; shape anisotropy; Introduction For any nanoparticle (NP) system, among the most important pieces of physical information for scientists is information related to the morphology (size, shape, and organization) of its constituents. In nanoscale systems, this
  • , the size is reported under the assumption of a quasi-spherical shape of the constituent particles. There is a multitude of techniques dedicated to nanoparticle analysis, which are able to provide information regarding the mean size and/or size distribution within a limited domain of sizes, for example
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Detection and imaging of Hg(II) in vivo using glutathione-functionalized gold nanoparticles

  • Gufeng Li,
  • Shaoqing Li,
  • Rui Wang,
  • Min Yang,
  • Lizhu Zhang,
  • Yanli Zhang,
  • Wenrong Yang and
  • Hongbin Wang

Beilstein J. Nanotechnol. 2022, 13, 549–559, doi:10.3762/bjnano.13.46

Graphical Abstract
  • molecular release system. After adding Cu(II), we observed a switching of the GNP–ʟ-Cys–Rh6G2 fluorescence from “OFF” to “ON” with high stability. Furthermore, it is worth noting that glutathione (GSH) contains a thiol and an amino group. It can not only conjugate to the nanoparticle surfaces through the
  • . Protons induce a weak fluorescence of the spirolactam framework at acidic pH through ring opening. Therefore, we suggest that in the presence of Hg2+ the formation of a Rh6G2–Hg2+ complex leads to ring opening, followed by the release of RGCOOH from the nanoparticle surface via hydrolysis, strongly
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • transfer contribution to SERS signal enhancement, the electromagnetic contribution also has an impact on the SERS signal [81]. Xue et al. [82] and Libin Yang et al. [83] argued that ZnO lattice defects created by doping the nanoparticle lattice with other cations increases the SERS enhancement by promoting
PDF
Album
Review
Published 27 May 2022
Other Beilstein-Institut Open Science Activities