Search results

Search for "positioning" in Full Text gives 142 result(s) in Beilstein Journal of Nanotechnology.

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • key achievement was the engineering of vertically oriented CNT-arrays by using CVD of ethylene, size-controlled Fe catalytic particles, and nanotube positioning by substrate patterning. The mechanism of the alignment of the CNTs was proposed to be due to the van der Waals forces where the outer wall
PDF
Album
Review
Published 22 Feb 2013

Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

  • Xiaoxing Ke,
  • Carla Bittencourt,
  • Sara Bals and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2013, 4, 77–86, doi:10.3762/bjnano.4.9

Graphical Abstract
  • nanostructure is shown in Figure 5b. The high-density stripes of the Pt nanoclusters are parallel to each other, and have an inclined angle of approximately 35° with respect to the long axis of CNT. This inclination can be tuned to any desired angle by positioning the CNTs relative to the scanning direction of
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2013

Nanostructure-directed chemical sensing: The IHSAB principle and the dynamics of acid/base-interface interaction

  • James L. Gole and
  • William Laminack

Beilstein J. Nanotechnol. 2013, 4, 20–31, doi:10.3762/bjnano.4.3

Graphical Abstract
  • can be correlated to allow the construction of a “Materials Positioning Diagram” for the acids and bases within the IHSAB and HSAB concepts as summarized in Figure 2 [7]. Recently, we have obtained additional data for PH3 on p+- and n-type decorated porous silicon (PS) [23]. For p-type PS, a TiO2
  • decorated surface is five times more responsive than the untreated PS interface [24]. For p+-type PS, TiO2, SnO2, CuxO, and AuxO decorated surfaces are respectively ≥ 4, 2.5, 3–3.5, and 7 times more responsive. The analyte response data forms the basis for the development of the materials positioning
  • situ modification shifts the positioning of the oxides toward the soft acid side of Figure 2 as it promotes the formation of a more basic interface. This enhancement of basic character promotes a significant change in sensor response. Results and Discussion Nitridation concept and enhanced basicity
PDF
Album
Review
Published 14 Jan 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • plasmonic structures, typically about 10 nm positioning accuracy must be achieved. Herein, the controlled positioning of single color centers in diamond is realized with nanometer spatial precision by ion-beam implantation through nanometer-sized apertures and by fabricating plasmonic structures with hot
  • relative to the gold markers is measured with nanometer precision by AFM. Finally, plasmonic structures are fabricated around the selected diamond nanocrystals. The middle panel of Figure 4b shows AFM images of the plasmonic resonators coupled to diamond nanocrystals. A positioning accuracy of about 20 nm
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012
Graphical Abstract
PDF
Album
Review
Published 17 Dec 2012

Physics, chemistry and biology of functional nanostructures

  • Paul Ziemann and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2012, 3, 843–845, doi:10.3762/bjnano.3.94

Graphical Abstract
  • -sized objects and functional systems. Examples are synthesis and controlled positioning of various nanoparticles and macromolecules providing, finally, specific functions if arranged on suitable platforms in an optimized way. In the context of arranging nanoobjects, the exploitation of self-organization
PDF
Editorial
Published 11 Dec 2012

Controlled positioning of nanoparticles on a micrometer scale

  • Fabian Enderle,
  • Oliver Dubbers,
  • Alfred Plettl and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2012, 3, 773–777, doi:10.3762/bjnano.3.86

Graphical Abstract
  • distances >1 µm on top of Si substrates. By using these NPs as masks for a subsequent reactive ion etching, the square pattern is transferred into Si as a corresponding array of nanopillars. Keywords: electron beam lithography; nanoparticles; positioning; self-assembling; unconventional lithography
  • importance [17][18]. Assuming that a fabrication recipe has been developed for NPs of a desired material, there is, however, for many applications still another demanding requirement: positioning the NPs at predesigned locations, either with respect to geometry, such as forming squares or triangles, or, at
  • distances of some tens of nanometers creative ideas have been realized based on even three-dimensional DNA spacers linked to Au NPs [23]. Somewhat more flexible with respect to the type of NPs is their positioning, exploiting wettability contrast of a substrate previously prepared by, e.g., microcontact
PDF
Album
Full Research Paper
Published 20 Nov 2012

Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

  • Mehmet Z. Baykara,
  • Omur E. Dagdeviren,
  • Todd C. Schwendemann,
  • Harry Mönig,
  • Eric I. Altman and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2012, 3, 637–650, doi:10.3762/bjnano.3.73

Graphical Abstract
  • positioning methods. Atom tracking [37] comprises the determination of the drift vector by measuring the shift in the position of an individual maximum in subsequent SPM images followed by an appropriate correction of the tip location that compensates for this drift. In contrast, the feed-forward procedure
  • during force-spectroscopy experiments, the use of digital electronics for NC-AFM detection and control generally eliminates the effects of electronic drifts on measured data. Piezo nonlinearities and piezo creep Positioning devices that employ piezoelectric materials to realize voltage-controlled
  • relative positioning of the tip and sample are widely used in SPM experiments (see, e.g., Figure 2) [38][39][40]. Despite subpicometer positioning accuracy, piezoelectric scanners display fundamental shortcomings. The most important limitation originates from the fact that the relationship between applied
PDF
Album
Full Research Paper
Published 11 Sep 2012

Spontaneous dissociation of Co2(CO)8 and autocatalytic growth of Co on SiO2: A combined experimental and theoretical investigation

  • Kaliappan Muthukumar,
  • Harald O. Jeschke,
  • Roser Valentí,
  • Evgeniya Begun,
  • Johannes Schwenk,
  • Fabrizio Porrati and
  • Michael Huth

Beilstein J. Nanotechnol. 2012, 3, 546–555, doi:10.3762/bjnano.3.63

Graphical Abstract
  • dissociation products remains as a deposit whose shape and position can be accurately controlled by the lateral positioning of the electron beam in an electron microscope [1][2][3][4][5]. Mostly gaseous, e.g., W(CO)6, Fe(CO)5, and CH3C5H5Pt(CH3)3 [6][7][8][9], but also liquid organometallic precursors
PDF
Album
Full Research Paper
Published 25 Jul 2012

Combining nanoscale manipulation with macroscale relocation of single quantum dots

  • Francesca Paola Quacquarelli,
  • Richard A. J. Woolley,
  • Martin Humphry,
  • Jasbiner Chauhan,
  • Philip J. Moriarty and
  • Ashley Cadby

Beilstein J. Nanotechnol. 2012, 3, 324–328, doi:10.3762/bjnano.3.36

Graphical Abstract
  • ], biomolecules [8][9], and quantum dots [10]. Nonetheless, these techniques fundamentally rely on a statistical distribution of molecules and are therefore not optimal for the study of specific isolated nanostructures at well-defined locations on a surface. Recent attempts at the positioning of quantum dots (QDs
  • ) based on electro-osmotic flow control (EOFC) [11][12] have resulted in a positioning precision of 130 nm when particle diffusion is suppressed. In a challenging recent experiment, atomic force microscopy (AFM) was used to manipulate a single gold nanoparticle (≈35 nm) to approach a single quantum dot
PDF
Album
Letter
Published 10 Apr 2012

Analysis of fluid flow around a beating artificial cilium

  • Mojca Vilfan,
  • Gašper Kokot,
  • Andrej Vilfan,
  • Natan Osterman,
  • Blaž Kavčič,
  • Igor Poberaj and
  • Dušan Babič

Beilstein J. Nanotechnol. 2012, 3, 163–171, doi:10.3762/bjnano.3.16

Graphical Abstract
  • , Achroplan 63/0.9W objective; Nd:YAG laser, 1064 nm, acousto-optic deflectors IntraAction and beam-steering controller Tweez by Aresis, d.o.o.). After the coarse initial positioning of the beads, the optical tweezers were switched off. The attractive force between the beads that stabilised the chain, the
PDF
Album
Full Research Paper
Published 24 Feb 2012

Distance dependence of near-field fluorescence enhancement and quenching of single quantum dots

  • Volker Walhorn,
  • Jan Paskarbeit,
  • Heinrich Gotthard Frey,
  • Alexander Harder and
  • Dario Anselmetti

Beilstein J. Nanotechnol. 2011, 2, 645–652, doi:10.3762/bjnano.2.68

Graphical Abstract
  • dependence of Γexc was taken into consideration. a) Schematic image of the combined TIRFM–AFM setup. The AFM is placed on top of an inverted microscope. The subnanometer spatial resolution of the AFM piezo drive allows precise positioning relative to the sample surface. The incident laser is directed towards
PDF
Album
Full Research Paper
Published 29 Sep 2011

Nanostructured, mesoporous Au/TiO2 model catalysts – structure, stability and catalytic properties

  • Matthias Roos,
  • Dominique Böcking,
  • Kwabena Offeh Gyimah,
  • Gabriela Kucerova,
  • Joachim Bansmann,
  • Johannes Biskupek,
  • Ute Kaiser,
  • Nicola Hüsing and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2011, 2, 593–606, doi:10.3762/bjnano.2.63

Graphical Abstract
  • quadrupole mass spectrometer (QMS). A triple-axis, high precision, sample stage allows for free (relative) positioning of the sample underneath the Ti cap, at any lateral position on the sample surface (cf. Figure 1). For the measurements, the pressure in the reaction chamber was varied between 0.5 and 5
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2011

Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention

  • Petra Ditsche-Kuru,
  • Erik S. Schneider,
  • Jan-Erik Melskotte,
  • Martin Brede,
  • Alfred Leder and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 137–144, doi:10.3762/bjnano.2.17

Graphical Abstract
  • microtrichia cover the special shape of the two different seta-types seems to contribute to this remarkable property. The angular positioning of the setae in the direction of flow leads to an increased contact area between setae and water when the setae are bent by increased pressure due to pressure
PDF
Album
Full Research Paper
Published 10 Mar 2011

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

  • Samer Darwich,
  • Karine Mougin,
  • Akshata Rao,
  • Enrico Gnecco,
  • Shrisudersan Jayaraman and
  • Hamidou Haidara

Beilstein J. Nanotechnol. 2011, 2, 85–98, doi:10.3762/bjnano.2.10

Graphical Abstract
  • Science Center Road, Corning, NY 14831, USA 10.3762/bjnano.2.10 Abstract One key component in the assembly of nanoparticles is their precise positioning to enable the creation of new complex nano-objects. Controlling the nanoscale interactions is crucial for the prediction and understanding of the
  • the particles, we did not find any differences when manipulating ordered vs random distributed particles. Keywords: atomic force microscopy; intermolecular interaction; manipulation; nanoparticles; precise positioning; self-assembled monolayers; Introduction Nanotechnology, which aims at the ideal
  • nanoscale objects (nano-objects), we mean using external force for positioning or assembling objects in two (2-D) or three (3-D) dimensions by twisting, bending, picking-and-placing, or pushing and pulling them [3]. Nanomanipulation is a complex 3-D problem. Because mechanical and chemical properties of
PDF
Album
Full Research Paper
Published 04 Feb 2011

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • results in a force onto the particles which entails the assembly close to air–liquid boundary. This allows for a controlled positioning of the particle monolayer within a specified target region (on top of magnetoresistive sensors, between contacts for measurements of electrical transport properties etc
PDF
Album
Review
Published 22 Nov 2010

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • plasma chamber together with its transfer system can be hooked up to a high-field end station at beam line PM3 at BESSY II synchrotron facility (Berlin), Germany and the 350 keV ion accelerator at Ulm University allowing full in situ sample manipulation. After positioning the micelle containing substrate
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities