Search results

Search for "surface chemistry" in Full Text gives 200 result(s) in Beilstein Journal of Nanotechnology.

An ISA-TAB-Nano based data collection framework to support data-driven modelling of nanotoxicology

  • Richard L. Marchese Robinson,
  • Mark T. D. Cronin,
  • Andrea-Nicole Richarz and
  • Robert Rallo

Beilstein J. Nanotechnol. 2015, 6, 1978–1999, doi:10.3762/bjnano.6.202

Graphical Abstract
  • information highlighted as being important. Firstly, this required consideration of which measurements might correspond to different kinds of physicochemical information; the “minimum” characterisation parameters reported in various proposals [12][53] are sometimes quite broadly defined, e.g., “Surface
  • Chemistry, including reactivity, hydrophobicity” [53]. Secondly, this required consideration of which corresponding Material file “Characteristics […]” and/or Assay file “Measurement Value […]” columns needed to be defined - as well as, in some cases, which “Parameter Value […]” columns needed to be defined
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2015

Temperature-dependent breakdown of hydrogen peroxide-treated ZnO and TiO2 nanoparticle agglomerates

  • Sinan Sabuncu and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 1897–1903, doi:10.3762/bjnano.6.193

Graphical Abstract
  • devices due to their unique physicochemical properties. One of the major problems with their widespread implementation is their uncontrolled agglomeration. One approach to reduce agglomeration is to alter their surface chemistry with a proper functionality in an environmentally friendly way. In this study
  • nm) was examined [16]. The thermal conductivity and surface potential of the nanofluids were also studied [17][18][19]. The toxicity of NPs is another concern that is strongly related to their size, shape, and surface chemistry. Since the synthesis of NPs of a certain size and shape in large
  • quantities is nearly impossible using current approaches, the surface chemistry can only be considered as an alternative to reduce the possible toxic effects. An appropriate functional group on the NP surface may improve biocompatibility and stability in various environments. In our previous study, we
PDF
Album
Full Research Paper
Published 14 Sep 2015

NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials

  • Katre Juganson,
  • Angela Ivask,
  • Irina Blinova,
  • Monika Mortimer and
  • Anne Kahru

Beilstein J. Nanotechnol. 2015, 6, 1788–1804, doi:10.3762/bjnano.6.183

Graphical Abstract
  • functionalisation of NPs was provided only in less than half of the entries. This is alarming because the surface chemistry of ENMs dictates their interactions with biological molecules and cells [45]. Altogether, 44% of the entries in the database contained information on NP coating: 29% of these were coated and
PDF
Album
Supp Info
Full Research Paper
Published 25 Aug 2015

Template-controlled mineralization: Determining film granularity and structure by surface functionality patterns

  • Nina J. Blumenstein,
  • Jonathan Berson,
  • Stefan Walheim,
  • Petia Atanasova,
  • Johannes Baier,
  • Joachim Bill and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 1763–1768, doi:10.3762/bjnano.6.180

Graphical Abstract
  • investigations will reveal if other properties such as piezoelectric activity, conductivity, optical or mechanical properties can also be controlled by the patterned surface chemistry of the substrate. Conclusion Here we demonstrate the control of the structure and granularity of a growing film by means of a
PDF
Album
Full Research Paper
Published 20 Aug 2015

Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish

  • Zitao Zhou,
  • Jino Son,
  • Bryan Harper,
  • Zheng Zhou and
  • Stacey Harper

Beilstein J. Nanotechnol. 2015, 6, 1568–1579, doi:10.3762/bjnano.6.160

Graphical Abstract
  • , chemical modifications are often performed on the NPs surface; however, the roles of these alterations play in determining the toxicity of ZnO NPs are still not well understood. As such, we investigated the toxicity of 17 diverse ZnO NPs varying in both size and surface chemistry to developing zebrafish
  • modification, regardless of the type, resulted in mortality at 24 hours post-fertilization (hpf) while uncoated particles did not induce significant mortality until 120 hpf. Using eight intrinsic chemical properties that relate to the outermost surface chemistry of the engineered ZnO nanoparticles, the highly
  • dimensional toxicity data were converted to a 2-dimensional data set through principal component analysis (PCA). Euclidean distance was used to partition different NPs into several groups based on converted data (score) which were directly related to changes in the outermost surface chemistry. Kriging
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2015

Thermal treatment of magnetite nanoparticles

  • Beata Kalska-Szostko,
  • Urszula Wykowska,
  • Dariusz Satula and
  • Per Nordblad

Beilstein J. Nanotechnol. 2015, 6, 1385–1396, doi:10.3762/bjnano.6.143

Graphical Abstract
  • easily inside the particle along the edges of structural discontinuation. Also, the surface chemistry is different from the previous case and it can behave differently at elevated temperature where partial evaporation could occur. The comparison of MNP-3 with MNP-2 particles shows that the mass loss is
PDF
Album
Full Research Paper
Published 23 Jun 2015

Heterometal nanoparticles from Ru-based molecular clusters covalently anchored onto functionalized carbon nanotubes and nanofibers

  • Deborah Vidick,
  • Xiaoxing Ke,
  • Michel Devillers,
  • Claude Poleunis,
  • Arnaud Delcorte,
  • Pietro Moggi,
  • Gustaaf Van Tendeloo and
  • Sophie Hermans

Beilstein J. Nanotechnol. 2015, 6, 1287–1297, doi:10.3762/bjnano.6.133

Graphical Abstract
  • found that their average particle size follows the sequence of GNF < MWNT ≈ SWNT < AC, but the activity and selectivity are sensitive to other factors such as porosity and surface chemistry of the carbon support [21][22]. Finally, alternative preparation methods have also been reported, including
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
  • a suitable conductive support structure. For the Li/S8 and Li/O2 batteries, this means that significant complexity is added, as a series of transport steps and nucleation/decomposition processes take place that will depend on the morphology, microstructure and surface chemistry of the conductive
PDF
Album
Review
Published 23 Apr 2015

Electrocatalysis on the nm scale

  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2015, 6, 1008–1009, doi:10.3762/bjnano.6.103

Graphical Abstract
  • R. Jurgen Behm Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany 10.3762/bjnano.6.103 Keywords: electrocatalysis; The past two decades have seen a renewed and rapidly growing interest in the fields of electrochemistry and
PDF
Editorial
Published 21 Apr 2015

Protein corona – from molecular adsorption to physiological complexity

  • Lennart Treuel,
  • Dominic Docter,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2015, 6, 857–873, doi:10.3762/bjnano.6.88

Graphical Abstract
  • presence and nature of this corona. The relation between the original surface functionality of the NP and the nature of the corona is far from trivial and still remains very elusive [1][2][3][4][5][6][7]. It has been shown that not only the NP surface chemistry but also features such as NP size [8] and
  • decreases its tendency to desorb. In this context, further experiments are desirable, dissecting the influences of avidity, affinity, van-der-Waals-type and Coulomb-type interactions. Role of surface chemistry A plethora of different surface functionalities exists and structure–function relationships have
PDF
Album
Review
Published 30 Mar 2015

Low-cost formation of bulk and localized polymer-derived carbon nanodomains from polydimethylsiloxane

  • Juan Carlos Castro Alcántara,
  • Mariana Cerda Zorrilla,
  • Lucia Cabriales,
  • Luis Manuel León Rossano and
  • Mathieu Hautefeuille

Beilstein J. Nanotechnol. 2015, 6, 744–748, doi:10.3762/bjnano.6.76

Graphical Abstract
  • after their formation. Unfortunately, the dependence of the fluorescence wavelengths and surface chemistry of the nanodomains with laser conditions as well as the thermal conditions influence on nanodomains formation have not been studied and will require future work to address these important
PDF
Album
Full Research Paper
Published 16 Mar 2015

In situ observation of biotite (001) surface dissolution at pH 1 and 9.5 by advanced optical microscopy

  • Chiara Cappelli,
  • Daniel Lamarca-Irisarri,
  • Jordi Camas,
  • F. Javier Huertas and
  • Alexander E. S. Van Driessche

Beilstein J. Nanotechnol. 2015, 6, 665–673, doi:10.3762/bjnano.6.67

Graphical Abstract
  • charge, point of zero salt effect) for an unambiguous description of biotite surface chemistry [48], in general, the alkali treatment of silicate mineral affects the variable surface charge in a way that reactivity towards charged and polar compounds should increase (increase in surface acidity) [49
PDF
Album
Full Research Paper
Published 05 Mar 2015

Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: a study of functionalization and stability

  • Ognen Pop-Georgievski,
  • Dana Kubies,
  • Josef Zemek,
  • Neda Neykova,
  • Roman Demianchuk,
  • Eliška Mázl Chánová,
  • Miroslav Šlouf,
  • Milan Houska and
  • František Rypáček

Beilstein J. Nanotechnol. 2015, 6, 617–631, doi:10.3762/bjnano.6.63

Graphical Abstract
  • inorganic surface chemistry [8]. Procedures based on electrostatically driven adsorption [9][10][11], covalent coupling [12], electrochemical surface modifications [13], self-organized organic layers [14][15], etc. have been extensively studied for the immobilization of biologically active molecules [16] on
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2015

Entropy effects in the collective dynamic behavior of alkyl monolayers tethered to Si(111)

  • Christian Godet

Beilstein J. Nanotechnol. 2015, 6, 583–594, doi:10.3762/bjnano.6.60

Graphical Abstract
  • surface chemistry, surface energy, biocompatibility, friction, corrosion, liquid chromatography, interfacial interactions and electronic transport [1][2][3][4][5][6]. More recent studies have been focused on the functionalization of nanostructures. However, in spite of a large number of experimental and
PDF
Album
Full Research Paper
Published 26 Feb 2015

Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model

  • Jennifer Y. Kasper,
  • Lisa Feiden,
  • Maria I. Hermanns,
  • Christoph Bantz,
  • Michael Maskos,
  • Ronald E. Unger and
  • C. James Kirkpatrick

Beilstein J. Nanotechnol. 2015, 6, 517–528, doi:10.3762/bjnano.6.54

Graphical Abstract
  • agglomeration behavior, their only differentiating property is their surface chemistry. This makes the selected samples appropriate candidates for a comparison of the influence of the surface properties on particle toxicity. In presence of Alveofact® (Lyomark Pharma), large agglomerates of a few hundred
PDF
Album
Full Research Paper
Published 20 Feb 2015

Synergic combination of the sol–gel method with dip coating for plasmonic devices

  • Cristiana Figus,
  • Maddalena Patrini,
  • Francesco Floris,
  • Lucia Fornasari,
  • Paola Pellacani,
  • Gerardo Marchesini,
  • Andrea Valsesia,
  • Flavia Artizzu,
  • Daniela Marongiu,
  • Michele Saba,
  • Franco Marabelli,
  • Andrea Mura,
  • Giovanni Bongiovanni and
  • Francesco Quochi

Beilstein J. Nanotechnol. 2015, 6, 500–507, doi:10.3762/bjnano.6.52

Graphical Abstract
  • serves to stabilize the sensing platform (as in the case of metal nanoparticles) and provides a specific affinity, resulting in improved selectivity [7][8][11][12]. Furthermore, the surface chemistry of thiol-based self-assembled monolayers has shown some limitations mainly related to their temporal
PDF
Album
Full Research Paper
Published 19 Feb 2015

Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

  • Anna Maria Pappa,
  • Varvara Karagkiozaki,
  • Silke Krol,
  • Spyros Kassavetis,
  • Dimitris Konstantinou,
  • Charalampos Pitsalidis,
  • Lazaros Tzounis,
  • Nikos Pliatsikas and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2015, 6, 254–262, doi:10.3762/bjnano.6.24

Graphical Abstract
  • complications of thrombosis and implant failure. Thus, we herein fabricated poly-ε-caprolactone (PCL) electrospun nanofibrous scaffolds, to serve as coatings for cardiovascular implants and guide tissue regeneration. Oxygen plasma treatment was applied in order to modify the surface chemistry of the scaffold
  • applied power of the plasma was selected with respect to its effect on the structural and chemical composition of the scaffold. The untreated and plasma-treated nanofibrous scaffolds were evaluated in terms of surface topography, hydrophilicity, and surface chemistry in order to find the conditions that
  • the chain backbone of the polymer and the oxygen in the plasma, modify the surface chemistry, which results in higher numbers of oxygen-containing functional groups. Indeed, changes were observed by the XPS analysis in the intensity of the peaks of the untreated and plasma-treated electrospun PCL
PDF
Album
Full Research Paper
Published 22 Jan 2015

Tailoring the ligand shell for the control of cellular uptake and optical properties of nanocrystals

  • Johannes Ostermann,
  • Christian Schmidtke,
  • Christopher Wolter,
  • Jan-Philip Merkl,
  • Hauke Kloust and
  • Horst Weller

Beilstein J. Nanotechnol. 2015, 6, 232–242, doi:10.3762/bjnano.6.22

Graphical Abstract
  • encapsulation of inorganic nanoparticles has been shown to depend on several parameters, like the ratio between ligands and particles or the surface chemistry of the particles. In this review the discussion is limited to the encapsulation of highly fluorescent QDs in PI-b-PEG for the use in biological systems
  • to enhance the cellular uptake, due to the attractive interaction with the negatively charged cell membrane [35][36]. Therefore, control over the surface chemistry is crucial to study the nanocontainers behavior in vitro and in vivo. Figure 7 shows possible functionalization of PI-b-PEG prior to the
  • . Especially the easily adjustable properties like size, surface chemistry and the shielding of the nanoparticles within the resulting nanocontainer are of a high importance, since these parameters determine the interaction with biomaterial. Furthermore, it has been demonstrated that this diblock copolymer
PDF
Album
Supp Info
Review
Published 21 Jan 2015

X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

  • Toma Susi,
  • Thomas Pichler and
  • Paola Ayala

Beilstein J. Nanotechnol. 2015, 6, 177–192, doi:10.3762/bjnano.6.17

Graphical Abstract
  • , especially single-walled. We will likewise only briefly describe measurement-specific issues and extrinsic effects. Most importantly, we will only consider heteroatom doping in the lattice itself. This explicitly leaves outside our scope the many forms of functionalization and surface chemistry that have
PDF
Album
Review
Published 15 Jan 2015

The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice

  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Markus Heine,
  • Christian Waurisch,
  • Gordon M. Stachowski,
  • Stephen G. Hickey,
  • Alexander Eychmüller,
  • Jörg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 111–123, doi:10.3762/bjnano.6.11

Graphical Abstract
  • them water soluble. This resulted in similar nanoparticles (comparable size, surface chemistry and charge), despite the completely different core material. This was proven when the biodistribution was compared using fluorescent Qdots and intravital microscopy in mice or MRI measurements in mice and TEM
  • colocalize with LSECs as well as with KCs. To date, polymer-coated Qdots were not found in hepatocytes. Since the surface chemistry of the Qdots and SPIOs is identical when coated with the amphiphilic polymer, the cell distribution should be similar. Intracellular processing of Qdots Further insight into the
PDF
Album
Full Research Paper
Published 09 Jan 2015

The fate of a designed protein corona on nanoparticles in vitro and in vivo

  • Denise Bargheer,
  • Julius Nielsen,
  • Gabriella Gébel,
  • Markus Heine,
  • Sunhild C. Salmen,
  • Roland Stauber,
  • Horst Weller,
  • Joerg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 36–46, doi:10.3762/bjnano.6.5

Graphical Abstract
  • . In order to make full use of their potential it is essential to understand what controls at the molecular level recognition by cells, cell entering and intracellular processing. Physicochemical properties of NPs such as material composition, size, shape, charge, and surface chemistry, have been
PDF
Album
Full Research Paper
Published 06 Jan 2015

Poly(styrene)/oligo(fluorene)-intercalated fluoromica hybrids: synthesis, characterization and self-assembly

  • Giuseppe Leone,
  • Francesco Galeotti,
  • William Porzio,
  • Guido Scavia,
  • Luisa Barba,
  • Gianmichele Arrighetti,
  • Giovanni Ricci,
  • Chiara Botta and
  • Umberto Giovanella

Beilstein J. Nanotechnol. 2014, 5, 2450–2458, doi:10.3762/bjnano.5.254

Graphical Abstract
  • ) expandable interlayer space. The combination of these features permits the easy tuning of the interaction between the emitting centers by surface chemistry (i.e., ion-exchange and grafting reactions), and a sandwich-type intercalation. In particular, the intercalation of functional molecular species within
PDF
Album
Full Research Paper
Published 19 Dec 2014

Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions

  • Cornelia Loos,
  • Tatiana Syrovets,
  • Anna Musyanovych,
  • Volker Mailänder,
  • Katharina Landfester,
  • G. Ulrich Nienhaus and
  • Thomas Simmet

Beilstein J. Nanotechnol. 2014, 5, 2403–2412, doi:10.3762/bjnano.5.250

Graphical Abstract
  • investigated. Due to their large surface to volume ratio, nanoparticles usually exhibit properties that differ from those of bulk materials. Particularly, the surface chemistry of the nanoparticles is crucial for their durability and solubility in biological media as well as for their biocompatibility and
  • living cells. The biological effects of nanoparticles depend not only on the particle material and their size, but to a great extent also on the surface chemistry of the particles. Surface functionalization of nanoparticles is crucial for their pharmacokinetics, biocompatibility, and tissue and cell
  • nanosized polystyrene particles may behave totally different from the bulk material. The surface chemistry plays a crucial role determining the impact of nanoparticles on diverse biological systems. The amino-functionalized particles can be seen as a model for cationic nanoparticles, and the carboxyl
PDF
Album
Review
Published 15 Dec 2014

Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects

  • Li Shang,
  • Karin Nienhaus,
  • Xiue Jiang,
  • Linxiao Yang,
  • Katharina Landfester,
  • Volker Mailänder,
  • Thomas Simmet and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2014, 5, 2388–2397, doi:10.3762/bjnano.5.248

Graphical Abstract
  • , the zeta potentials of all NPs in PBS were also measured. As expected from the surface chemistry of the NPs, the NH2-modified (NPS) and the CTMA-adsorbed NPs carried a positive surface charge; all other preparations had a negative surface charge. Cellular uptake of small (diameter 3–10 nm) NPs Figure
PDF
Album
Full Research Paper
Published 11 Dec 2014

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • sizes, and morphology. Aside from the properties of the single components added one by one to form the properties of the heterostructure, several new properties emerge from the morphology and surface chemistry of the heterodimers [35]: (i) multifunctionality based on the different surface chemistry of
  • particles are diluted in biological media [102]. On the contrary, the encapsulation of isotropic nanoparticles in a silica shell was established, which is advantageous because of the extraordinary stability of silica and its well-known surface chemistry that allows further functionalization. Furthermore
  • stability in aqueous media is of particular importance for biomedical applications, the extraordinary stability of silica encapsulated nanoparticles and the well-known surface chemistry of silica were transferred to Janus particles, whereby the Janus character was retained due to the distinct chemical
PDF
Album
Review
Published 05 Dec 2014
Other Beilstein-Institut Open Science Activities