Search results

Search for "CNTs" in Full Text gives 159 result(s) in Beilstein Journal of Nanotechnology.

Structural, electronic and photovoltaic characterization of multiwalled carbon nanotubes grown directly on stainless steel

  • Luca Camilli,
  • Manuela Scarselli,
  • Silvano Del Gobbo,
  • Paola Castrucci,
  • Eric Gautron and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2012, 3, 360–367, doi:10.3762/bjnano.3.42

Graphical Abstract
  • silicon substrate plays an important role in the production of electron–hole pairs. Keywords: carbon nanotubes; electronic properties; heterojunction; photovoltaic; stainless steel; Introduction Carbon nanotubes (CNTs) possess unique electronic, mechanical and optical properties that make them
  • interesting for fundamental studies as well as practical applications [1]. Among the various synthesis techniques, chemical vapour deposition is preferred in the field of electronics, since it allows for the direct growth of CNTs on substrates [2]. CNTs are generally synthesized on Si or Si/SiO2 substrates
  • been made to grow CNTs on SS substrates with [4][5] or without [6][7] the addition of an external catalyst. In particular, we have shown that the growth of high quality multiwalled CNTs on SS in the absence of an external catalyst is possible because the nanoscale roughness and the metallic nature of
PDF
Album
Full Research Paper
Published 02 May 2012

Surface functionalization of aluminosilicate nanotubes with organic molecules

  • Wei Ma,
  • Weng On Yah,
  • Hideyuki Otsuka and
  • Atsushi Takahara

Beilstein J. Nanotechnol. 2012, 3, 82–100, doi:10.3762/bjnano.3.10

Graphical Abstract
  • ratios and ability to form network structures. It is no doubt that nanotubes with reactive surfaces and a reliable supply are preferred for the application as scaffold of organic molecules. Carbon nanotubes (CNTs) play an important role in the nanotube family. However, the surface of CNTs is inert for
PDF
Album
Review
Published 02 Feb 2012
Graphical Abstract
  • -driven self-assembly of preformed PSS-wrapped CNTs. In our case, the presence of IPA in the media was assumed to play an essential role in the formation of the pyramidlike structure since the use of neat water did not give this kind of surface structure. However, the detailed formation mechanism is still
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2011

Generation and agglomeration behaviour of size-selected sub-nm iron clusters as catalysts for the growth of carbon nanotubes

  • Ravi Joshi,
  • Benjamin Waldschmidt,
  • Jörg Engstler,
  • Rolf Schäfer and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2011, 2, 734–739, doi:10.3762/bjnano.2.80

Graphical Abstract
  • °C, no CNT growth is observed. Keywords: carbon nanotubes; CNT growth; metal clusters; size selected clusters; Introduction Controlling the individual diameters of carbon nanotubes (CNTs) is still one of the major challenges in current CNT research, and it is particularly important as it determines
  • crucially their physical and electronic properties. High quality single-walled and double-walled CNTs are currently prepared on a large scale with the aid of nm-sized transition metal catalysts, by using high-temperature chemical vapour deposition (CVD) techniques above 750 °C, despite the fact that several
  • crystal [6]. Size-defined, sub-nm, ligand-free metal clusters would be an interesting synthetic alternative to obtain CNTs with controlled diameter. However, such small metal clusters can only be generated by gas-phase techniques, typically in a ligand-free environment as naked clusters. A controlled
PDF
Album
Full Research Paper
Published 01 Nov 2011

Optical properties of fully conjugated cyclo[n]thiophenes – An experimental and theoretical approach

  • Elena Mena-Osteritz,
  • Fan Zhang,
  • Günther Götz,
  • Peter Reineker and
  • Peter Bäuerle

Beilstein J. Nanotechnol. 2011, 2, 720–726, doi:10.3762/bjnano.2.78

Graphical Abstract
  • of cyclo[n]thiophenes was developed. By using linear pentameric quinquethiophene L5T as a building block, a series of individual macrocycles CnT, from C10T to an unprecedented size up to C35T, was obtained in an excellent overall yield of around 60%. For the first time, CnTs including members with an
PDF
Album
Full Research Paper
Published 25 Oct 2011

Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film

  • Sławomir Boncel,
  • Krzysztof Z. Walczak and
  • Krzysztof K. K. Koziol

Beilstein J. Nanotechnol. 2011, 2, 311–317, doi:10.3762/bjnano.2.36

Graphical Abstract
  • ; Introduction Wettability of carbon nanotubes (CNTs) and highly aligned carbon nanotube (HACNT) films is an important aspect in numerous technologies including manufacture of composites [1], fabrication of constantly/interchangeably hydrophobic or hydrophilic materials [2][3], nanofluidic devices [4] or sponges
  • for non-polar liquids [5]. One of the cutting edge areas of research exploiting CNTs is nanomedicine where the interface of CNTs with a liquid environment is essential, e.g., subcutaneous glucose sensors [6], microcatheters [7] or tissue engineering materials [8]. Until now, physical compatibility of
  • liquids and pristine CNTs was determined by dispersibility of randomly oriented and highly entangled, hydrophobic nanotubes. Wetting of CNTs in non-polar to medium polar liquids (a key factor enabling their dispersibility) can be gained generally via two routes: (1) By control of the CNTs dimensions
PDF
Album
Letter
Published 20 Jun 2011

Studies towards synthesis, evolution and alignment characteristics of dense, millimeter long multiwalled carbon nanotube arrays

  • Pitamber Mahanandia,
  • Jörg J. Schneider,
  • Martin Engel,
  • Bernd Stühn,
  • Somanahalli V. Subramanyam and
  • Karuna Kar Nanda

Beilstein J. Nanotechnol. 2011, 2, 293–301, doi:10.3762/bjnano.2.34

Graphical Abstract
  • , India 10.3762/bjnano.2.34 Abstract We report the synthesis of aligned arrays of millimeter long carbon nanotubes (CNTs), from benzene and ferrocene as the molecular precursor and catalyst respectively, by a one-step chemical vapor deposition technique. The length of the grown CNTs depends on the
  • reaction temperature and increases from ~85 µm to ~1.4 mm when the synthesis temperature is raised from 650 to 1100 °C, while the tube diameter is almost independent of the preparation temperature and is ~80 nm. The parallel arrangement of the CNTs, as well as their tube diameter can be verified
  • spectroscopically by small angle X-ray scattering (SAXS) studies. Based on electron diffraction scattering (EDS) studies of the top and the base of the CNT films, a root growth process can be deduced. Keywords: carbon nanotubes; characterization; synthesis; Introduction CNTs have been extensively studied in
PDF
Album
Full Research Paper
Published 14 Jun 2011

Zirconium nanoparticles prepared by the reduction of zirconium oxide using the RAPET method

  • Michal Eshed,
  • Swati Pol,
  • Aharon Gedanken and
  • Mahalingam Balasubramanian

Beilstein J. Nanotechnol. 2011, 2, 198–203, doi:10.3762/bjnano.2.23

Graphical Abstract
  • the application of metallic Zr is the use of Zr nanoparticles (NP) as catalysts for growing TWCNTs (two or three graphene layer tubing) [5]. The presence of the zirconium as a catalyst ensures an effective method for the synthesis of high purity and good quality CNTs. The best known process for the
PDF
Album
Full Research Paper
Published 06 Apr 2011

Electrochemical behavior of dye-linked L-proline dehydrogenase on glassy carbon electrodes modified by multi-walled carbon nanotubes

  • Haitao Zheng,
  • Leyi Lin,
  • Yosuke Okezaki,
  • Ryushi Kawakami,
  • Haruhiko Sakuraba,
  • Toshihisa Ohshima,
  • Keiichi Takagi and
  • Shin-ichiro Suye

Beilstein J. Nanotechnol. 2010, 1, 135–141, doi:10.3762/bjnano.1.16

Graphical Abstract
  • enzyme, specific immobilization strategies, including electron mediators, should be considered [10][11][12]. In the last decade, the use of nano materials, especially carbon nanotubes (CNTs), in the construction of enzyme biosensors has received considerable attention. Because of their excellent
  • mechanical and electrochemical properties [13][14], CNTs can mediate the electron transfer between an electrode and a number of electroactive substances such as hydrogen peroxide, ascorbic acid and dopamine, and accelerate surface electrochemical reactions [15]. Direct electron transfer between the active
  • site of several biomacromolecules and the electrode surface can also be set up with the aid of CNTs [16][17]. Because the application of CNTs can dramatically improve the sensitivity of electrochemical sensors, more and more analytical chemists have focused their attention on CNTs-modified electrodes
PDF
Album
Full Research Paper
Published 14 Dec 2010
Other Beilstein-Institut Open Science Activities