Search results

Search for "flow" in Full Text gives 898 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Modeling a multiple-chain emeraldine gas sensor for NH3 and NO2 detection

  • Hana Sustkova and
  • Jan Voves

Beilstein J. Nanotechnol. 2022, 13, 721–729, doi:10.3762/bjnano.13.64

Graphical Abstract
  • molecular properties of polyaniline have been studied by quantum mechanical means in [4][8]. The band structure was calculated by Reis et al. [9], together with transmittance, electrical current flow, and charge density. For these calculations, density functional theory (DFT, [10]) based on the generalized
PDF
Album
Full Research Paper
Published 26 Jul 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • cathode side to enable uniform distribution of O2 gas as well as efficient current collection. The cell was assembled in a glove box filled with purified Ar gas. Then, it was placed in a gas-tight chamber with a controlled gas flow rate and pressure, and high-purity O2 gas (99.99%) was supplied to the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • electrochemical exfoliation, whereby graphene is exfoliated in an electrolyte from an electrode made of graphite [19]. In electrochemical exfoliation, ions from the electrolyte flow towards the graphite electrode and intercalate between the graphene layers. The electrochemical reaction provides a driving force to
PDF
Album
Full Research Paper
Published 18 Jul 2022

A superconducting adiabatic neuron in a quantum regime

  • Marina V. Bastrakova,
  • Dmitrii S. Pashin,
  • Dmitriy A. Rybin,
  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Igor I. Soloviev,
  • Anastasiya A. Gorchavkina and
  • Arkady M. Satanin

Beilstein J. Nanotechnol. 2022, 13, 653–665, doi:10.3762/bjnano.13.57

Graphical Abstract
  • is an important parameter that determines the possibility of the ANN dynamic adaptation. Such tunability is required when working with rapidly changing content. The corresponding information flow naturally arises, for example, within the framework of novel telecommunication paradigms, such as
PDF
Album
Full Research Paper
Published 14 Jul 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • nanoparticles produced by EPN and ASP techniques have notably increased solubility and dissolution rate due to their semicrystalline form. The small size of the nanoparticles can be obtained by adjusting the drug concentration, flow rate, stirring rate, and antisolvent volume in EPN and ASP methods [28]. Many
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • /CuO–water and Cu/CuO–kerosene oil ionized nanofluid flow over a stretched three-dimensional linear sheet. The dominant thermal conductivity increment was observed in Cu/water nanofluids in contrast to other partially ionized nanofluids. For parabolic stretched surfaces [32], a similar theoretical
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • elasticity compared to PCa cells. The reverse is true for viscosity. It is shown that normal cells respond to stiff substrates by increasing elasticity without affecting viscosity in order to prevent shape changes (or flow) which leads to cell movement. And cancer cells, despite stiffening to a certain
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • substrates were first cleaned in a 1% Hellmanex solution at 70 °C for 30 min in an ultrasonic bath, then washed three times in distilled water, dried by nitrogen flow, and finally treated in a UV ozone chamber for 5 min to obtain the cleaned FTO electrode. Precursor solutions were prepared by dissolving (NH4
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections

  • Sharif Abdelghany,
  • Walhan Alshaer,
  • Yazan Al Thaher,
  • Maram Al Fawares,
  • Amal G. Al-Bakri,
  • Saja Zuriekat and
  • Randa SH. Mansour

Beilstein J. Nanotechnol. 2022, 13, 517–527, doi:10.3762/bjnano.13.43

Graphical Abstract
  • isocratic composition of 0.025 M phosphoric acid (pH 3.0 ± 0.1) previously adjusted with triethylamine/acetonitrile (80:20 v/v), eluted at a flow rate of 1.5 mL/min. The injection volume was 20 µL. The drug concentration was then determined according to a calibration curve. The calibration curve was plotted
PDF
Album
Full Research Paper
Published 15 Jun 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • with the depth of the master mold. This is related to solvent evaporation as described in the literature for other biopolymeric MNs prepared by solvent casting [37][38]. The above sizes allow the MNs to rupture the stratum corneum but not reach the blood vessels, creating ducts that facilitate the flow
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • amount of EGCG permeated in the receptor compartment during in vitro release and cell permeation experiments) of EGCG was carried out by HPLC assay on an Agilent 1200 Series system using acetic acid 1%. An acetonitrile (1.5:8.5 v/v) mixture was used as the mobile phase delivered at a flow rate of 1 mL
PDF
Album
Full Research Paper
Published 31 May 2022

Tubular glassy carbon microneedles with fullerene-like tips for biomedical applications

  • Sharali Malik and
  • George E. Kostakis

Beilstein J. Nanotechnol. 2022, 13, 455–461, doi:10.3762/bjnano.13.38

Graphical Abstract
  • article, we have followed the nanoarchitectonics [10] concept to fabricate our glassy carbon material by using methane as building unit and carbon source rather than polymers. There are earlier works on methane pyrolysis in a flow reactor by F. G. Billaud et al. [11] and Z. Bai and co-workers [12]. Bai et
  • pyrolysis of methane on a curved alumina surface. The surface provides the catalyst as well as the “strain” required to direct nucleation and growth. Figure 1a is a scanning electron microscopy (SEM) overview image showing a number of glassy carbon microneedles, which grow in the direction of the gas flow
  • interlayer spacing in glassy carbon corresponds to the nature of the intercalating species [26]. Here the “stress” arises from the constraints of the growing glassy carbon layers from the curved alumina gas-flow tube and the intercalating species, which are gaseous species, generated when methane undergoes
PDF
Album
Full Research Paper
Published 19 May 2022

Tunable superconducting neurons for networks based on radial basis functions

  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Igor I. Soloviev,
  • Mikhail Yu. Kupriyanov,
  • Maxim V. Tereshonok and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2022, 13, 444–454, doi:10.3762/bjnano.13.37

Graphical Abstract
  • resistivity ρN ≪ ρS, which ensures its lower kinetic inductance relative to the rest of the structure. This leads to a flow of the current mostly through this layer in the case of the open valve. Figure 6a shows the spatial distributions of the pairing amplitude F(x) in the cross section of this structure for
PDF
Album
Full Research Paper
Published 18 May 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • (Figure 5). The characterization system consists of mass flow controllers (Bronkhorst High-Tech) for setting the required gas concentration, a source-meter (Keithley, Model 2400) for resistance measurement of active layers, an air-tight chamber with electrical feedthroughs for the sensor array, a relay
  • displayed in Figure 6. The experiment consisted of 5 min of sensor exposure to a certain gas concentration and 5 min of purging at a flow rate of 100 mL·s−1. It is evident that all active layers have the highest sensitivity and clear response to NH3. All active composite layers except PANI+ZnO exhibit a
PDF
Album
Full Research Paper
Published 27 Apr 2022

Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation

  • Season S. Chen,
  • Zhen-Jie Yang,
  • Chia-Hao Chang,
  • Hoong-Uei Koh,
  • Sameerah I. Al-Saeedi,
  • Kuo-Lun Tung and
  • Kevin C.-W. Wu

Beilstein J. Nanotechnol. 2022, 13, 313–324, doi:10.3762/bjnano.13.26

Graphical Abstract
  • other side of the membrane was connected to a soap-film flow meter downstream to measure the gas permeation volume of the target gas. The pressure drop between feed side and permeation side was measured by a pressure meter (Bronkhorst EL-PRESS) and was kept at 20 psi. The temperature of the system was
  • kept at room temperature (25 °C). The permeance Pi (mol·m−2·s−1·Pa−1) of the permeation gas was determined using the following equation: where Ni (mol·s−1) is the permeation molar flow rate of component gas i, ΔPi (Pa) is the trans-membrane pressure drop of gas i, and A (m2) is the effective membrane
  • area. The ideal separation factor α of gas species i with respect to gas species j was defined by the following equation: where Pi and Pj are the permeances of gas component i and j, respectively. The permeation flow volume of the target gas was recorded every 30 min during the measurement until the
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • barrier of electron transfer, thus, enabling electron flow from insulator to metal (vice versa) or from an insulator to another insulator. TENGs are miniaturized and portable. They generate current by collecting tiny amounts of energy and supply power for microelectronic devices and sensors. Wind energy
  • , such as template forming, plasma treatment, and chemical approaches. Previous studies mostly focused on the preparation process of the nanoscale morphology on the polymer surface [47][48][49]. The electrons on the polymer surface cannot be transferred to the conduction band and the charge cannot flow
  • . Hence, electric charges can move from one electrode to the other through an electrostatic field. When the materials are brought in contact again, the electrostatic field will disappear. Finally, the electrons flow in the opposite direction. An alternating current will be generated through the repetition
PDF
Album
Full Research Paper
Published 15 Mar 2022

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • very thin (ca. 10 nm) region with different structural properties and chemical composition. From the performed TEM analysis (Figure 8) it can be interpreted as an amorphous area. During the deposition process, the flow of oxygen supplied to the working chamber was constant. Decreasing the power
  • resulted in a relatively high series resistance. In the discussed case, switching from the high- to the low-resistance state could be connected with the formation of filament-type conduction paths that allow electrical charge carriers to flow between two opposite contacts. Conductive filaments are often
  • thin film structure as a function of the forcing current for both directions of the current flow. Retention characteristics for the Au/(Ti–Cu)Ox/TiAlV thin film structure. Transmission and reflection characteristics for gradient (Ti–Cu)Ox thin film. XPS spectra of the surface of (Ti0.48Cu0.52)Ox thin
PDF
Album
Full Research Paper
Published 24 Feb 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • at high concentrations. Similarly, cells in the saline + NIR sample seemed as healthy as those in the saline control group. Consistent with these microscopy observations, flow cytometry analysis, which utilized Annexin V and propidium iodide to quantitate apoptosis and necrosis, showed that the
  • -based nanoparticles, this method has long been regarded as the gold standard for cell viability and proliferation studies, and thus been applied extensively in studies of metal-containing nanoparticles [18][19][20]. In accordance with our flow cytometry findings, the MTT viability assay showed that in
  • , which was then combined with 10 mg individual ferric tetroxide (Fe3O4) nanoparticles in chloroform solution. Step 3: after 3 min vigorous vortex, the mixture in step 2 was transferred into a three-necked flask that was incubated at 40 °C in a water bath, while chloroform was removed in a nitrogen flow
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • the temperature range from 300 to 360 K at 1 bar pressure under helium atmosphere in an optical continuous flow cryostat (Oxford Optistat CF). Optical switching experiments were performed by applying light with the discrete wavelength in the range of 440 to 540 nm using a Hg arc lamp and subsequent
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Piezoelectric nanogenerator for bio-mechanical strain measurement

  • Zafar Javed,
  • Lybah Rafiq,
  • Muhammad Anwaar Nazeer,
  • Saqib Siddiqui,
  • Muhammad Babar Ramzan,
  • Muhammad Qamar Khan and
  • Muhammad Salman Naeem

Beilstein J. Nanotechnol. 2022, 13, 192–200, doi:10.3762/bjnano.13.14

Graphical Abstract
  • electrospinning. A conventional electrospinning process was used to create the piezoelectric electrospun nanofibers. The polymeric solution was pumped from a metallic syringe needle of 0.4 mm inner diameter at a flow rate of 3.5 mL/h. The fibers were collected on a stationary collector placed at a working
PDF
Album
Full Research Paper
Published 07 Feb 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • spectrometer (QMS). Both positive and negative ions resulting from the electron–molecule interaction are analyzed and detected using the quadrupole mass spectrometer. The flow of the molecular beam can be controlled with a leak valve. The TEM is heated to 120 °C with two halogen lamps in order to avoid
PDF
Album
Full Research Paper
Published 04 Feb 2022

Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy

  • Hiroya Tanaka,
  • Shinya Ohno,
  • Kazushi Miki and
  • Masatoshi Tanaka

Beilstein J. Nanotechnol. 2022, 13, 172–181, doi:10.3762/bjnano.13.12

Graphical Abstract
  • dark depression forms inside circle (c). This dark depression is similar to that observed in the oxidation mode. At an oxygen exposure of 7.0 L, the step-flow etching of the three-layer depth occurs along the direction from the step edge indicated by the solid arrow (b’). At an oxygen exposure over
  • 8.6 L, step-flow etching occurs along the direction and in the opposite direction. The step-flow etching is pinned at the dark depression site corresponding to the oxide, as indicated by the circle (c’). After the step-etching proceeds, a small island remains, as shown in the circle (c”). The step
  • -flow etching of the monolayer depth occurs just beside the remaining island, as shown by the solid arrow. The island remains at the step edge, as shown in the circle (d). A magnified image of the island in (d) is shown in Figure 4a. The line profile along the cross section A–B is shown in Figure 4b
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • process parameters include the applied voltage, the distance from needle tip to collector, and the polymer flow rate. The solution parameters include solution concentration, molecular weight, solution viscosity, volatility of the solvents and solution conductivity. The ambient parameters are the
  • = V/D). The electric field strength, however, is strong at high applied voltages and becomes a dominant factor. The combination of these two factors will define the eventual fiber shape [25]. 3.1.3 Polymer flow rate. The amount of polymer to be electrospun depends on the polymer flow rate. To obtain a
  • stable Taylor cone, a minimum of polymer solution must be fed to the tip [27]. But when the flow rate is high, an undesirable amount of polymer is fed to the tip of the needle, which increases the fiber diameter. The surplus polymer jet is then difficult to be stretched, and it is difficult for the
PDF
Album
Review
Published 31 Jan 2022

A photonic crystal material for the online detection of nonpolar hydrocarbon vapors

  • Evgenii S. Bolshakov,
  • Aleksander V. Ivanov,
  • Andrei A. Kozlov,
  • Anton S. Aksenov,
  • Elena V. Isanbaeva,
  • Sergei E. Kushnir,
  • Aleksei D. Yapryntsev,
  • Aleksander E. Baranchikov and
  • Yury A. Zolotov

Beilstein J. Nanotechnol. 2022, 13, 127–136, doi:10.3762/bjnano.13.9

Graphical Abstract
  • the diameter of the Debye diffraction ring [2][5][6][10]. Currently, very few works are devoted to the study of the mechanism that leads to the shift of the PBG in 2D and 3D photonic crystals. This is caused by the variety of flow processes in the structure, which are significantly influenced by the
PDF
Album
Full Research Paper
Published 25 Jan 2022

Bacterial safety study of the production process of hemoglobin-based oxygen carriers

  • Axel Steffen,
  • Yu Xiong,
  • Radostina Georgieva,
  • Ulrich Kalus and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2022, 13, 114–126, doi:10.3762/bjnano.13.8

Graphical Abstract
  • packed red blood cells (RBC) were washed at least three times with sterile 0.9% NaCl and lysed overnight with four to five volumes of a low osmotic sodium chloride solution (100 mOsmol/kg). The lysate was centrifuged at 5500g at 2–8 °C for 4 h and the supernatant was processed by means of tangential flow
PDF
Album
Full Research Paper
Published 24 Jan 2022
Other Beilstein-Institut Open Science Activities