Search results

Search for "ion beam" in Full Text gives 214 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Patterning technique for gold nanoparticles on substrates using a focused electron beam

  • Takahiro Noriki,
  • Shogo Abe,
  • Kotaro Kajikawa and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2015, 6, 1010–1015, doi:10.3762/bjnano.6.104

Graphical Abstract
  • structures with gold and silver nanoparticles using a nanomanipulator. This technique is fascinating, but it may be a time-consuming process for production of relatively large circuits. Nanostructures have also been fabricated using focused ion beam- or focused electron beam-induced deposition [1][7
PDF
Album
Full Research Paper
Published 22 Apr 2015

Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

  • Sini Kuriakose,
  • D. K. Avasthi and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2015, 6, 928–937, doi:10.3762/bjnano.6.96

Graphical Abstract
  • lateral mass flow leading to the formation of larger nanorod like structures with increased width and distinct facets, as can be seen in Figure 1c and Figure 1d. The photocatalysis studies were carried out by taking MB and MO as model organic dyes to demonstrate the capability of ion beam engineering to
  • powders were purchased from Merck, India, while Cu powder was purchased from Loba Chemie. Methylene blue (MB) and methyl orange (MO) were procured from SRL, India. All chemicals used were of analytical grade and were used without any further purification. Synthesis and ion beam engineering of ZnO–CuO
PDF
Album
Full Research Paper
Published 10 Apr 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • ]. Additionally, FEBID is a more gentle technique as compared to similar techniques (e.g., ion beam induced deposition (IBID)) which is beneficial for many applications. The major drawback to FEBID is the purity of the final deposits which results from unwanted precursor fragments left after dissociation. The
  • grown to a thickness of ca. 400 nm and subsequently purified at 25 °C at various times from 1 to 12 min. After curing, the pads were sectioned using gallium focused ion beam milling to reveal the Pt layer thickness as a function of purification time. The SEM micrographs in Figure 2 depict the bright
  • parameters during deposition. As the layer is extremely thin (a few monolayers) it can also be easily removed ex situ by with a brief focused ion beam etch. Microstructure Transmission electron microscopy (TEM) images of the as-deposited and cured PtCx EBID patterns were taken to compare the microstructure
PDF
Album
Full Research Paper
Published 08 Apr 2015

Hollow plasmonic antennas for broadband SERS spectroscopy

  • Gabriele C. Messina,
  • Mario Malerba,
  • Pierfrancesco Zilio,
  • Ermanno Miele,
  • Michele Dipalo,
  • Lorenzo Ferrara and
  • Francesco De Angelis

Beilstein J. Nanotechnol. 2015, 6, 492–498, doi:10.3762/bjnano.6.50

Graphical Abstract
  • (SERS) and are activated by a wide range of excitation wavelengths. The three-dimensional hollow nanoantennas were produced on an optical resist by a secondary electron lithography approach, generated by fast ion-beam milling on the polymer and then covered with silver in order to obtain plasmonic
  • accordance with calculations derived from the FEM method. Experimental Hollow three-dimensional electric field enhancing structures were obtained through an innovative fabrication method based on secondary electron lithography, generated by ion beam milling. The detailed process has been discussed elsewhere
  • in depth [23]. Briefly, a layer of optical resist (Shipley S1813) is deposited by spin coating on the top of a silicon nitride membrane. The structure of the antenna is defined from the backside of the membrane by focused ion beam milling (FEI, NanoLab 600 dual beam system) using a gallium ion source
PDF
Album
Full Research Paper
Published 18 Feb 2015

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

  • Tobias Meier,
  • Alexander Förste,
  • Ali Tavassolizadeh,
  • Karsten Rott,
  • Dirk Meyners,
  • Roland Gröger,
  • Günter Reiss,
  • Eckhard Quandt,
  • Thomas Schimmel and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2015, 6, 451–461, doi:10.3762/bjnano.6.46

Graphical Abstract
  • prepared by a sequence of MEMS techniques including photolithography, reactive ion etching (RIE), ion beam etching (IBE) and wet etching. The cantilevers used in this study were 300 to 350 μm long and 40 μm wide. To ease the fabrication process thicknesses ranging from 10 μm to 20 μm were chosen. The
  • focused ion beam and electron beam deposition, tips can be manually been grown on the apex of the cantilever [59]. The use of such tips enables high lateral resolution as tip radii as small as 30 nm can be achieved. The advantage of this approach is that the tip is subsequently grown and without altering
  • different angles of the bias field towards the easy axis. The bias field has a strong influence on the strain sensitivity of the TMR sensor. a) To improve lateral resolution, tips with a tip radius of 30 nm were grown by a combination of focused ion beam and electron beam deposition deposition. b) Atomic
PDF
Album
Video
Full Research Paper
Published 13 Feb 2015

Electrical properties of single CdTe nanowires

  • Elena Matei,
  • Camelia Florica,
  • Andreea Costas,
  • María Eugenia Toimil-Molares and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2015, 6, 444–450, doi:10.3762/bjnano.6.45

Graphical Abstract
  • . Focused ion beam-induced metallization was used to produce individual nanowires with electrical contacts and electrical measurements were performed on these individual nanowires. The influence of a bottom gate was investigated and it was found that surface passivation leads to improved transport
  • combination of lithography and focused ion beam-induced metallization (FIBIM). The electrical properties were determined for individual nanowires prepared under different conditions. Further, the effect of a bottom gate on the charge carriers transported through the nanowire channel was examined. It was also
  • nanowire suspension was placed on Si/SiO2 substrates on which interdigitated Ti/Au electrodes were patterned by photolithography (Figure 4). FIBIM is a direct patterning method employed for the design of metallic nanostructures. The method is based on the interaction of an ion beam with the surface
PDF
Album
Full Research Paper
Published 12 Feb 2015

Nanoporous Ge thin film production combining Ge sputtering and dopant implantation

  • Jacques Perrin Toinin,
  • Alain Portavoce,
  • Khalid Hoummada,
  • Michaël Texier,
  • Maxime Bertoglio,
  • Sandrine Bernardini,
  • Marco Abbarchi and
  • Lee Chow

Beilstein J. Nanotechnol. 2015, 6, 336–342, doi:10.3762/bjnano.6.32

Graphical Abstract
  • for the fabrication of nanocrystals by dewetting, such as metals or semiconductors. In addition, the structure of the dewetted layers can be controlled using several techniques such as pulsed laser annealing [35][36] or a substrate patterned by focused ion beam. The study of Ge dewetting on SiO2 [37
  • the sample surface, and with an ion beam energy of 130 keV for Se+ ions and of 180 keV for Te+ ions. After implantation, the samples were annealed in different conditions (1 ≤ t ≤ 168 h and 525 ≤ T ≤ 725 °C) in a custom-built furnace under a pressure of 1 × 10−7 mbar during annealing. TEM images were
PDF
Album
Full Research Paper
Published 30 Jan 2015

Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

  • Anna Maria Pappa,
  • Varvara Karagkiozaki,
  • Silke Krol,
  • Spyros Kassavetis,
  • Dimitris Konstantinou,
  • Charalampos Pitsalidis,
  • Lazaros Tzounis,
  • Nikos Pliatsikas and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2015, 6, 254–262, doi:10.3762/bjnano.6.24

Graphical Abstract
  • hydrophobic character [19]. To date, several surface-engineering techniques have been applied in order to chemically modify surfaces of electrospun nanofibers [9][20][21][22], including treatments by flame, corona discharge, plasma, photons, electron beam, ion beam, X-rays, and gamma rays. Among them
PDF
Album
Full Research Paper
Published 22 Jan 2015

Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

  • Gemma Rius,
  • Matteo Lorenzoni,
  • Soichiro Matsui,
  • Masaki Tanemura and
  • Francesc Perez-Murano

Beilstein J. Nanotechnol. 2015, 6, 215–222, doi:10.3762/bjnano.6.20

Graphical Abstract
  • 3 cm, at nearly room temperature. The basal and working pressures are 1.5 × 10−5 Pa and 2 × 10−2 Pa, respectively. The ion beam energy is 600 eV, and the growth duration is 8 min. CNF elliptical cross section is smaller than 50 nm in diameter, and it is systematically and conveniently aligned with
PDF
Album
Full Research Paper
Published 19 Jan 2015

Bright photoluminescence from ordered arrays of SiGe nanowires grown on Si(111)

  • D. J. Lockwood,
  • N. L. Rowell,
  • A. Benkouider,
  • A. Ronda,
  • L. Favre and
  • I. Berbezier

Beilstein J. Nanotechnol. 2014, 5, 2498–2504, doi:10.3762/bjnano.5.259

Graphical Abstract
  • in the substrate by focused ion beam patterning for the preferential nucleation and growth of these well-organized NWs. The NWs thus produced have a diameter of 200 nm, a length of 200 nm, and a Ge concentration x = 0.15. Their photoluminescence (PL) spectra were measured at low temperatures (from 6
  • positioned [28]. We have evolved an efficient and simple electrochemical process that joins focused-ion-beam (FIB) lithography and galvanic reaction to selectively prepare gold nanoparticles in well-defined locations. Afterwards these nanoparticles are used for the molecular beam epitaxy (MBE) growth of
  • having an Orsay Physics mass filtered ion column operated at 30 keV. A liquid metal alloy ion source (LMAIS) of Au4Si ([Si] = 19%, [Au] = 81%) heated at 450 °C was used for the milling step; a Au2+ or Si+ ion beam was selected independently by a Wien filter. The patterns in the Si/SiO2 substrate were
PDF
Album
Full Research Paper
Published 30 Dec 2014

Si/Ge intermixing during Ge Stranski–Krastanov growth

  • Alain Portavoce,
  • Khalid Hoummada,
  • Antoine Ronda,
  • Dominique Mangelinck and
  • Isabelle Berbezier

Beilstein J. Nanotechnol. 2014, 5, 2374–2382, doi:10.3762/bjnano.5.246

Graphical Abstract
  • uses structures shaped by dual beam focus ion beam (FIB) as tips exhibiting a tip diameter between 50 nm (top of the tip) and 200 nm [38][39]. Figure 1 presents the different steps leading to the formation of APT samples by FIB. After the deposition of a Ni cap for the protection of the sample surface
PDF
Album
Full Research Paper
Published 09 Dec 2014

Two-dimensional and tubular structures of misfit compounds: Structural and electronic properties

  • Tommy Lorenz,
  • Jan-Ole Joswig and
  • Gotthard Seifert

Beilstein J. Nanotechnol. 2014, 5, 2171–2178, doi:10.3762/bjnano.5.226

Graphical Abstract
  • Tommy Lorenz Jan-Ole Joswig Gotthard Seifert Theoretische Chemie, Technische Universität Dresden, 01069 Dresden, Germany Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, P.O. Box 51 01 19, 01314 Dresden, Germany 10.3762/bjnano.5.226 Abstract Misfit
PDF
Album
Review
Published 19 Nov 2014

Nanometer-resolved mechanical properties around GaN crystal surface steps

  • Jörg Buchwald,
  • Marina Sarmanova,
  • Bernd Rauschenbach and
  • Stefan G. Mayr

Beilstein J. Nanotechnol. 2014, 5, 2164–2170, doi:10.3762/bjnano.5.225

Graphical Abstract
  • substrate by ion beam-assisted molecular beam epitaxy [24]. Measurements for the elastic properties of the GaN film were performed by a CR-AFM, that was custom-built into a commercial Asylum Research MFP-3D AFM [25]. The AFM probe used for CR-AFM imaging was a Si PPP-NCLR (NanoSensors, Switzerland) with a
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2014

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • nanostructuring by nanosecond laser irradiation of thin metal films is a simple and cost-effective approach, providing a reasonable alternative to the relatively expensive and time-consuming fabrication of NP arrays of regular geometries with the use of ion beam and plasma techniques [26][27]. In this paper, the
  • , including those produced by other techniques such as ion beam lithography and colloidal synthesis [47]. Mid-field enhancement Measurements of the micro-Raman spectra and quantitative data on the SERS effect provide a reliable check of the sensing capability from the point of view of the ultrasensitive
PDF
Album
Review
Published 13 Nov 2014

Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

  • Domenico Melisi,
  • Maria Angela Nitti,
  • Marco Valentini,
  • Antonio Valentini,
  • Teresa Ligonzo,
  • Giuseppe De Pascali and
  • Marianna Ambrico

Beilstein J. Nanotechnol. 2014, 5, 1999–2006, doi:10.3762/bjnano.5.208

Graphical Abstract
  • layouts were used for the realization of the photodetectors (Figure 1). The first configuration, named single face sample (SFS), has a CNT layer sprayed on one face and a titanium/gold layer (30/50 nm), deposited by ion beam sputtering (IBS) [16], on the other face. The second one, named double face
PDF
Album
Full Research Paper
Published 05 Nov 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • dissolution process in cells (including the localization of low concentrations of small nanoparticles as well as silver ions) imaging at the Ag L3,2 edges is a promising option for future work. Focused ion beam (FIB) and optical microscopy (phase contrast microscopy; fluorescence microscopy; confocal laser
  • reveal any formation of silver agglomerates (Figure 6A). In order to prove that the silver agglomerates are located inside the cells, focused ion beam milling (FIB) was applied which permits the view on cross sections of various materials by a beam of high-energy gallium ions [77][78]. After culturing
PDF
Album
Review
Published 03 Nov 2014

Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope

  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • Philipp Leinen,
  • Alexander Grötsch,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 1926–1932, doi:10.3762/bjnano.5.203

Graphical Abstract
  • used a qPlus sensor [17] manufactured by CREATEC. The AFM/STM tip was made from a 0.3 mm long and 15 μm thick PtIr wire glued to the tuning fork of the qPlus sensor, and sharpened with a gallium focused ion beam (FIB). The resulting resonance frequency of the qPlus sensor was f0 = 30,300 Hz with a
PDF
Album
Supp Info
Video
Full Research Paper
Published 31 Oct 2014

Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

  • Pravin Kumar,
  • Udai Bhan Singh,
  • Kedar Mal,
  • Sunil Ojha,
  • Indra Sulania,
  • Dinakar Kanjilal,
  • Dinesh Singh and
  • Vidya Nand Singh

Beilstein J. Nanotechnol. 2014, 5, 1864–1872, doi:10.3762/bjnano.5.197

Graphical Abstract
  • film irradiated with Se/Sn = 1 shows ≈5 nm Pt NPs were buried up to ≈240 nm into the silicon. No silicide phase was detected in the XRD pattern of the film irradiated at the highest value of Se/Sn. The synergistic effect of the energy losses of the ion beam (molten zones are produced by Se, and
  • -dimensional structures of various elements with narrow size distribution is a big challenge for scientists [9][10][11]. Due to certain advantages, namely, the control of growth parameters and spatial distribution, ion beam synthesis of buried nanoparticles (NPs) has received considerable attention in recent
  • desired particle distribution profile (longitudinal) in the matrix. The multiple energy implantations of the ions are used to increase this distribution profile further [16]. The transverse distribution is controlled by scanning the ion beam over the sample (desired matrix). The ion fluence and the
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2014

Silicon and germanium nanocrystals: properties and characterization

  • Ivana Capan,
  • Alexandra Carvalho and
  • José Coutinho

Beilstein J. Nanotechnol. 2014, 5, 1787–1794, doi:10.3762/bjnano.5.189

Graphical Abstract
  • significantly decreases the thermal budget, when compared to other growth techniques. Moreover, it implies that PLD should be considered as an excellent alternative to the widely used magnetron co-sputtering technique for the deposition of complex oxide thin films and NCs. II.2 Ion implantation An ion beam
PDF
Album
Review
Published 16 Oct 2014

Experimental techniques for the characterization of carbon nanoparticles – a brief overview

  • Wojciech Kempiński,
  • Szymon Łoś,
  • Mateusz Kempiński and
  • Damian Markowski

Beilstein J. Nanotechnol. 2014, 5, 1760–1766, doi:10.3762/bjnano.5.186

Graphical Abstract
  • mentioned carbon types has a full width at half-maximum of approximately 30 cm−1. For the sonicated sample, a third signal appears (marked with NG). Its position is shifted towards shorter wavenumbers. A similar peak was previously observed on graphene treated with an argon ion beam [29]. The width of the
PDF
Album
Review
Published 13 Oct 2014

Nanocrystalline ceria coatings on solid oxide fuel cell anodes: the role of organic surfactant pretreatments on coating microstructures and sulfur tolerance

  • Chieh-Chun Wu,
  • Ling Tang and
  • Mark R. De Guire

Beilstein J. Nanotechnol. 2014, 5, 1712–1724, doi:10.3762/bjnano.5.181

Graphical Abstract
  • same procedures as for the nickel-GDC anodes. Then cross-sections were prepared by using a focused ion beam unit, and EDXS maps were superimposed on the cross-sectional images (Figure 6). With YSZ replacing the GDC as the ionically conducting phase in the anode, the ceria coating could easily be
  • obtained by using the focused ion beam unit of the Nova Nanolab. Output voltage and ASR at low current density, showing sulfur tolerance. Yellow shading denotes 24 h periods of H2S exposure in the anode stream at the concentration indicated. (Treatment-1 cell (no ceria coating) with no interlayer.) Output
PDF
Album
Full Research Paper
Published 06 Oct 2014

A study on the consequence of swift heavy ion irradiation of Zn–silica nanocomposite thin films: electronic sputtering

  • Compesh Pannu,
  • Udai B. Singh,
  • Dinesh. C. Agarwal,
  • Saif A. Khan,
  • Sunil Ojha,
  • Ramesh Chandra,
  • Hiro Amekura,
  • Debdulal Kabiraj and
  • Devesh. K. Avasthi

Beilstein J. Nanotechnol. 2014, 5, 1691–1698, doi:10.3762/bjnano.5.179

Graphical Abstract
  • . But in case of metals, experimentally measured sputtering yields indicate a synergetic effect of electronic excitations and nuclear collision cascades. The emission of clusters raised great scientific interest in the field of ion beam interaction with matter in order to understand the fundamental
  • dependence on the size of nanoparticles. Apart from electronic sputtering, the sputtered species collected on a catcher are also studied. In this report, an effort is made for understanding the interaction of the ion beam with nanodimensional material in light of the results obtained on the sputtering
  • pressure spike inside the ion track, initiated by a thermal spike. Experimental setup. The ion beam is incident perpendicularly to the nanocomposite thin film and catcher is placed at an angle of 60° from thin film surface. RBS spectra of Zn–silica nanocomposite thin film before and after irradiation, (a
PDF
Album
Full Research Paper
Published 01 Oct 2014

Probing the electronic transport on the reconstructed Au/Ge(001) surface

  • Franciszek Krok,
  • Mark R. Kaspers,
  • Alexander M. Bernhart,
  • Marek Nikiel,
  • Benedykt R. Jany,
  • Paulina Indyka,
  • Mateusz Wojtaszek,
  • Rolf Möller and
  • Christian A. Bobisch

Beilstein J. Nanotechnol. 2014, 5, 1463–1471, doi:10.3762/bjnano.5.159

Graphical Abstract
  • source software GSxM [17] and data processing was done by using WxSM [18]. For the transmission electron microscope (TEM) measurements lamellas of the Au/Ge(001) of the very same sample were prepared with the use of an FEI Quanta 3D FEG scanning electron microscope equipped with a 30 keV Ga+ focused ion
  • beam gun (FIB). In order to preserve the surface of the Au/Ge sample against the standard FIB operation during the lamella preparation, the sample surface at first was covered (capped) with a 20 nm layer of thermally evaporated carbon. Then, on top of the cap layer, a platinum layer was deposited using
PDF
Album
Full Research Paper
Published 05 Sep 2014

Microstructural and plasmonic modifications in Ag–TiO2 and Au–TiO2 nanocomposites through ion beam irradiation

  • Venkata Sai Kiran Chakravadhanula,
  • Yogendra Kumar Mishra,
  • Venkata Girish Kotnur,
  • Devesh Kumar Avasthi,
  • Thomas Strunskus,
  • Vladimir Zaporotchenko,
  • Dietmar Fink,
  • Lorenz Kienle and
  • Franz Faupel

Beilstein J. Nanotechnol. 2014, 5, 1419–1431, doi:10.3762/bjnano.5.154

Graphical Abstract
  • swift heavy ions. Au–TiO2 and Ag–TiO2 nanocomposite thin films with varying metal volume fractions were deposited by co-sputtering and were subsequently irradiated by 100 MeV Ag8+ ions at various ion fluences. The morphology of these nanocomposite thin films before and after ion beam irradiation has
  • ion beam induced growth of nanoparticles and structural modifications in the titania matrix. Keywords: noble metal–titania nanocomposite; surface plasmon resonance; swift heavy ions; Introduction Metal nanoparticles embedded in dielectric matrices in the form of nanocomposites have gained
  • , whereas if the inter particle distance is larger a size reduction occurs. If the particles are larger than the diameter of ion track, but smaller than a particular size, they elongate along the ion beam direction, resulting in parallel elongated nanoparticles [22][27][30][31][32]. SHI irradiation can
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2014

Nanocavity crossbar arrays for parallel electrochemical sensing on a chip

  • Enno Kätelhön,
  • Dirk Mayer,
  • Marko Banzet,
  • Andreas Offenhäusser and
  • Bernhard Wolfrum

Beilstein J. Nanotechnol. 2014, 5, 1137–1143, doi:10.3762/bjnano.5.124

Graphical Abstract
  • sections of the nanocavity sensor, cut by a focused ion beam (FIB), can be found in Figure 6. Fabrication Devices are structured by means of optical lithography and are processed in class-100 cleanroom facilities. Nanocavities at the intersections between platinum electrodes are formed via the deposition
PDF
Album
Full Research Paper
Published 23 Jul 2014
Other Beilstein-Institut Open Science Activities