Search results

Search for "iron oxide" in Full Text gives 160 result(s) in Beilstein Journal of Nanotechnology.

Synthesis of boron nitride nanotubes from unprocessed colemanite

  • Saban Kalay,
  • Zehra Yilmaz and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2013, 4, 843–851, doi:10.3762/bjnano.4.95

Graphical Abstract
  • that the mechanisms of the two different iron oxide catalysts, Fe3O4 or Fe2O3, are rather different. The SEM images showed that the BNNTs were obtained in high yield from colemanite as the starting compound with CVD technique in the presence of Fe2O3 and NH3 gas at 1280 °C. Only the use of Fe2O3
PDF
Album
Full Research Paper
Published 04 Dec 2013

A facile synthesis of a carbon-encapsulated Fe3O4 nanocomposite and its performance as anode in lithium-ion batteries

  • Raju Prakash,
  • Katharina Fanselau,
  • Shuhua Ren,
  • Tapan Kumar Mandal,
  • Christian Kübel,
  • Horst Hahn and
  • Maximilian Fichtner

Beilstein J. Nanotechnol. 2013, 4, 699–704, doi:10.3762/bjnano.4.79

Graphical Abstract
  • nanocomposite exhibits well constructed core–shell and nanotube structures, with Fe3O4 cores and graphitic shells/tubes. The as-synthesized material could be used directly as anode in a lithium-ion cell and demonstrated a stable capacity, and good cyclic and rate performances. Keywords: electrochemistry; iron
  • oxide; lithium-ion battery; nanoparticles; pyrolysis; Findings Due to high energy density and excellent cyclic performance, lithium-ion batteries (LIBs) have become the leading energy storage device for portable electronic markets and for powering upcoming electric vehicles [1][2]. In order to obtain
PDF
Album
Supp Info
Letter
Published 30 Oct 2013

Ferromagnetic behaviour of Fe-doped ZnO nanograined films

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Thomas Tietze,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2013, 4, 361–369, doi:10.3762/bjnano.4.42

Graphical Abstract
  • thin films (see micrographs in Figure 1a). In the samples with 0.1, 5, 12, and 20 atom % Fe only pure quartzite grains are present, according to the studies with selected area diffraction (Figure 1b), TEM and XRD. These methods reveal the presence of ternary cubic zinc–iron oxide ZnFe2O4 in samples
PDF
Album
Full Research Paper
Published 13 Jun 2013

Electrospinning preparation and electrical and biological properties of ferrocene/poly(vinylpyrrolidone) composite nanofibers

  • Ji-Hong Chai and
  • Qing-Sheng Wu

Beilstein J. Nanotechnol. 2013, 4, 189–197, doi:10.3762/bjnano.4.19

Graphical Abstract
  • , Fc may start to form some kind of iron oxide/nitride and eventually be fixed after a certain time in nitrogen gas. The final weight loss is about 48 wt%. When the temperature further increases to 600 °C, the residue does not change. The blank PVP nanofibers show two significant steps of weight loss
PDF
Album
Full Research Paper
Published 14 Mar 2013

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2012, 3, 759–772, doi:10.3762/bjnano.3.85

Graphical Abstract
  • include, but are not limited to, their use in targeted drug delivery and chemical sensors in the identification of oil, removal of contaminants and enhanced oil recovery (EOR). Au, iron oxide, polymer and silica nanoparticles have been studied in targeted drug delivery [3][4][5][6][7][8]. In cancer
  • treatment, nanoparticles are either functionalized with biomolecules that recognize and attach to the cancer cells, [6][7] or in the case of iron-oxide nanoparticles, the nanoparticles are directed by an external magnetic field [9]. The cells are destroyed by drugs that coat the nanoparticles or by
  • release of this agent on contact with hydrocarbons is used as an indication of the presence of oil on recovery of the nanoparticles [10]. In contaminant removal, nanocomposites composed of collagen and superparamagnetic iron-oxide nanoparticles (SPIONs) have been investigated. The collagen selectively
PDF
Album
Full Research Paper
Published 15 Nov 2012

Paper modified with ZnO nanorods – antimicrobial studies

  • Mayuree Jaisai,
  • Sunandan Baruah and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2012, 3, 684–691, doi:10.3762/bjnano.3.78

Graphical Abstract
  • in the concentration of the nanoparticles [14]. Other metal oxides, such as iron oxide, also exhibit antibacterial and antifungal properties, as have been reported by Prucek et al. [15]. In a photocatalysis process, electron–hole pairs are generated through photonic excitation of wide-band-gap metal
PDF
Album
Full Research Paper
Published 11 Oct 2012

Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages

  • Hongwang Wang,
  • Tej B. Shrestha,
  • Matthew T. Basel,
  • Raj K. Dani,
  • Gwi-Moon Seo,
  • Sivasai Balivada,
  • Marla M. Pyle,
  • Heidy Prock,
  • Olga B. Koper,
  • Prem S. Thapa,
  • David Moore,
  • Ping Li,
  • Viktor Chikan,
  • Deryl L. Troyer and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2012, 3, 444–455, doi:10.3762/bjnano.3.51

Graphical Abstract
  • dopamine to SN38 Dopamine has been reported as a robust anchor to immobilize functional groups on the surface of iron oxide nanoparticles [39][40][41][42][43][44][45]. Introducing polyethylene glycol to the dopamine anchor can greatly improve both the solubility and biocompatibility of iron oxide
  • removed and 0 to 320 µg/mL of SN38-loaded Fe/Fe3O4 nanoparticles in fresh medium was added. After 24 h, the medium was removed; the cells were washed with 1× PBS three times, and stained with Prussian blue and counter stained by nuclear fast red to confirm that the loaded nanoparticles were iron/iron
  • oxide nanoparticles. Flow cytometry Flow cytometry was used to determine the percentage of cells loaded with MNP. The cells were plated in six-well plates at a density of 300,000 cm−2 and allowed to attach overnight. The next day, the cells reached 70% confluence. They were then incubated with 0, 20, 40
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2012

Magnetic nanoparticles for biomedical NMR-based diagnostics

  • Huilin Shao,
  • Tae-Jong Yoon,
  • Monty Liong,
  • Ralph Weissleder and
  • Hakho Lee

Beilstein J. Nanotechnol. 2010, 1, 142–154, doi:10.3762/bjnano.1.17

Graphical Abstract
  • ][21][22][23][24][25]. A variety of chemical methods, ranging from traditional wet chemistry to high-temperature thermal decomposition, have been employed to synthesize MNPs. Colloidal iron oxide nanoparticles, which are used as clinical magnetic resonance imaging (MRI) contrast agents, are generally
  • and their representative strategies described below have been shown to be uniquely suited for DMR applications. Cross-linked iron oxide nanoparticles Cross-linked iron oxide (CLIO) nanoparticles have been widely used for DMR applications on account of their excellent stability and biocompatibility [13
  • ][37][38][39][40][41][42]. CLIO nanoparticles contain a superparamagnetic iron oxide core (3–5 nm monocrystalline iron oxide) composed of ferrimagnetic magnetite (Fe3O4) and/or maghemite (γ-Fe2O3). The metallic core is subsequently coated with biocompatible dextran, before being cross-linked with
PDF
Album
Review
Published 16 Dec 2010

Ultrafine metallic Fe nanoparticles: synthesis, structure and magnetism

  • Olivier Margeat,
  • Marc Respaud,
  • Catherine Amiens,
  • Pierre Lecante and
  • Bruno Chaudret

Beilstein J. Nanotechnol. 2010, 1, 108–118, doi:10.3762/bjnano.1.13

Graphical Abstract
  • , which corresponds to the signal recorded after exposure of the NPs to air, displays a pre-edge characteristic of an iron oxide [30][31][32]. For the two metallic phases, the shapes of the edge itself are however, quite different. The second shoulder and the maximum of the absorption are shifted toward
PDF
Album
Full Research Paper
Published 03 Dec 2010

Magnetic coupling mechanisms in particle/thin film composite systems

  • Giovanni A. Badini Confalonieri,
  • Philipp Szary,
  • Durgamadhab Mishra,
  • Maria J. Benitez,
  • Mathias Feyen,
  • An Hui Lu,
  • Leonardo Agudo,
  • Gunther Eggeler,
  • Oleg Petracic and
  • Hartmut Zabel

Beilstein J. Nanotechnol. 2010, 1, 101–107, doi:10.3762/bjnano.1.12

Graphical Abstract
  • magnetic force microscopy. Moreover, an exchange bias effect was found, which is likely to be due to oxygen exchange between the iron oxide and the Co layer, and thus forming of an antiferromagnetic CoO layer at the γ-Fe2O3/Co interface. Keywords: exchange bias; iron oxide nanoparticles; nanoparticle self
  • the particle/film interface by oxygen exchange from both the iron oxide and the organic oleic acid to the Co layer. In the event of oxygen exchange between the iron oxide nanoparticles and the Co layer, it is reasonable to expect a change in stoichiometry of the nanoparticles, at least at the surface
  • . Experimental Iron oxide NPs were prepared by thermal decomposition of metal-oleate complexes [40]. As-prepared, particles with mean diameter of 20 nm and 7% size distribution were coated with a ~2 nm thick layer of oleic acid and dissolved in toluene. The NP dispersion, with a concentration of approximately 50
PDF
Album
Full Research Paper
Published 01 Dec 2010
Other Beilstein-Institut Open Science Activities