Search results

Search for "manipulation" in Full Text gives 213 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Atomic scale interface design and characterisation

  • Carla Bittencourt,
  • Chris Ewels and
  • Arkady V. Krasheninnikov

Beilstein J. Nanotechnol. 2015, 6, 1708–1711, doi:10.3762/bjnano.6.174

Graphical Abstract
  • density-functional theory (DFT) approaches. In addition, using DFT-based molecular dynamics, the manipulation of nanostructures by SPM tools and the changes made to the system by the characterization tools, e.g., the production of defects under electron irradiation and their evolution over time, can be
  • metal-nanostructures contacts, development of new tools for characterization and manipulation nanostructures, atomic-scale quantum chemical modelling, and integration in potential devices. All of these are reflected in the 26 reviews presented here. They appropriately demonstrate the richness and
PDF
Editorial
Published 10 Aug 2015

Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

  • Szymon Godlewski,
  • Jakub S. Prauzner-Bechcicki,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymoński

Beilstein J. Nanotechnol. 2015, 6, 1498–1507, doi:10.3762/bjnano.6.155

Graphical Abstract
  • supported by the high stability of the system against scanning with different bias voltage and tunnelling current parameters, which do not trigger any type of tip-induced manipulation process. Despite the position, i.e., on a step-edge or on a terrace, all molecules are oriented in the same way, i.e., along
PDF
Album
Full Research Paper
Published 10 Jul 2015

Molecular materials – towards quantum properties

  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1485–1486, doi:10.3762/bjnano.6.153

Graphical Abstract
  • trade-off between decoupling of the quantum object for low decoherence and connecting it for the electrical read-out could be achieved [2]. Quantum computing, the manipulation of data encoded in qubits instead of bits of information such as spin states of electrons or of an atomic nucleus, has been a
PDF
Editorial
Published 08 Jul 2015

Graphene quantum interference photodetector

  • Mahbub Alam and
  • Paul L. Voss

Beilstein J. Nanotechnol. 2015, 6, 726–735, doi:10.3762/bjnano.6.74

Graphical Abstract
  • states is reached. The electron–photon interaction has the form Helec−photon = (e/m0)A·P, where A is the vector potential and P is the momentum operator. If the vector potential, A, is expressed in the second quantized form, the electron–photon interaction in the position basis (after some manipulation
PDF
Album
Full Research Paper
Published 12 Mar 2015

Manipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry

  • Maxim E. Stebliy,
  • Alexander G. Kolesnikov,
  • Alexey V. Ognev,
  • Alexander S. Samardak and
  • Ludmila A. Chebotkevich

Beilstein J. Nanotechnol. 2015, 6, 697–703, doi:10.3762/bjnano.6.70

Graphical Abstract
  • applied during measurements. It is found that manipulation of the magnetic vortex chirality and the trajectory of the vortex core in the big disk is only possible in asymmetric nanostructures. Experimentally studied peculiarities of a motion path of the vortex core and vortex parameters by the magneto
  • logic elements. However, micromagnetic stability decreases with the reduction of the size of a nanomagnet resulting in a lack of controllability the spin configurations [1]. Therefore, the development of reliable methods for the manipulation of micromagnetic structures in nanomagnets is an important
  • applications due to the high value of an applied field (usually, larger than 1 kOe [3]). The in-plane component of the vortex state is characterized by the clockwise (CW) or counterclockwise (CCW) magnetization rotation or chirality. The majority of methods of chirality manipulation are based on an application
PDF
Album
Full Research Paper
Published 10 Mar 2015

Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite

  • Ilka Kriegel and
  • Francesco Scotognella

Beilstein J. Nanotechnol. 2015, 6, 193–200, doi:10.3762/bjnano.6.18

Graphical Abstract
  • of doped semiconductor nanostructures is the option to chemically and electrochemically modify their plasmon resonance frequencies by changing the material’s carrier density. For copper chalcogenide NCs, chemical manipulation has been demonstrated in response to oxidizing and reducing treatments [27
PDF
Album
Supp Info
Full Research Paper
Published 16 Jan 2015

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • potential applications as catalysts, in drug delivery, biomedical imaging, high-throughput immunoassays, for biological probing, and remote manipulation of devices. In addition, Janus particles may find use as surfactants, water-repellent coatings, or building blocks for supramolecular structures. We put
PDF
Album
Review
Published 05 Dec 2014

Hybrid spin-crossover nanostructures

  • Carlos M. Quintero,
  • Gautier Félix,
  • Iurii Suleimanov,
  • José Sánchez Costa,
  • Gábor Molnár,
  • Lionel Salmon,
  • William Nicolazzi and
  • Azzedine Bousseksou

Beilstein J. Nanotechnol. 2014, 5, 2230–2239, doi:10.3762/bjnano.5.232

Graphical Abstract
  • [FeIICrIII(CN)6]@CsI[NiIICrIII(CN)6] systems [26]. These core–multishell coordination nanoparticles were fabricated using a straightforward, surfactant-free manipulation with precise size control of the sample by controlling the addition rate and the concentration of the components. It is worth noting that
PDF
Album
Review
Published 25 Nov 2014

Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope

  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • Philipp Leinen,
  • Alexander Grötsch,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 1926–1932, doi:10.3762/bjnano.5.203

Graphical Abstract
  • molecular-scale functional design, which includes arranging molecules into complex structures at will. The first steps towards this goal were made through the invention of the scanning probe microscope (SPM), which put single-atom and single-molecule manipulation into practice for the first time. Extending
  • the controlled manipulation to larger molecules is expected to multiply the potential of engineered nanostructures. Here we report an enhancement of the SPM technique that makes the manipulation of large molecular adsorbates much more effective. By using a commercial motion tracking system, we couple
  • the movements of an operator's hand to the sub-angstrom precise positioning of an SPM tip. Literally moving the tip by hand we write a nanoscale structure in a monolayer of large molecules, thereby showing that our method allows for the successful execution of complex manipulation protocols even when
PDF
Album
Supp Info
Video
Full Research Paper
Published 31 Oct 2014

Spin annihilations of and spin sifters for transverse electric and transverse magnetic waves in co- and counter-rotations

  • Hyoung-In Lee and
  • Jinsik Mok

Beilstein J. Nanotechnol. 2014, 5, 1887–1898, doi:10.3762/bjnano.5.199

Graphical Abstract
  • rings lack a magnetic resonance mode in comparison to split rings. In addition, the enantiomer sorting takes advantage of the optical chirality and helical flows which accompany the photon spins [5][12]. Another important area in which AM-carrying beams prove useful is the manipulation of nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2014

Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions

  • Anastasios Stergiou,
  • Georgia Pagona and
  • Nikos Tagmatarchis

Beilstein J. Nanotechnol. 2014, 5, 1580–1589, doi:10.3762/bjnano.5.170

Graphical Abstract
  • surfaces [5][6], liquid exfoliation via sonication [7][8], dissolution in superacids such as chlorosulfonic acid [9] and ball milling [10]. However, a major drawback of graphene, likewise of carbon nanotubes, stems from its insolubility in all solvents, which impedes the chemical manipulation toward
PDF
Album
Review
Published 18 Sep 2014

Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

  • Christoph Rehbock,
  • Jurij Jakobi,
  • Lisa Gamrad,
  • Selina van der Meer,
  • Daniela Tiedemann,
  • Ulrike Taylor,
  • Wilfried Kues,
  • Detlef Rath and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2014, 5, 1523–1541, doi:10.3762/bjnano.5.165

Graphical Abstract
  • distributions. Generally, a manipulation of the laser wavelength is only relevant in case it may be reabsorbed by the nanoparticles to induce photofragmentation. This reduces particle sizes and broadens size distributions, which was reported, e.g., during PLAL of gold with green (λ = 523 nm) and UV (λ = 355 nm
PDF
Album
Video
Review
Published 12 Sep 2014

Model systems for studying cell adhesion and biomimetic actin networks

  • Dorothea Brüggemann,
  • Johannes P. Frohnmayer and
  • Joachim P. Spatz

Beilstein J. Nanotechnol. 2014, 5, 1193–1202, doi:10.3762/bjnano.5.131

Graphical Abstract
  • , talin can also be a useful tool for controlled manipulation of liposome morphology, which can play an important role in the development of synthetic cells. Since the early 2000’s, research on talin reconstituted in lipid bilayers has not been pursued anymore although many fundamental results on cellular
PDF
Album
Review
Published 01 Aug 2014

Nanoforging – Innovation in three-dimensional processing and shaping of nanoscaled structures

  • Andreas Landefeld and
  • Joachim Rösler

Beilstein J. Nanotechnol. 2014, 5, 1066–1070, doi:10.3762/bjnano.5.118

Graphical Abstract
  • . Conclusion: Compared with other forming techniques in the reduced scale, nanoforging represents a beneficial approach in forming freestanding metallic structures, due to its simplicity, and supplements other forming techniques. Keywords: forging; manipulation; nanoforging; plastic deformation; tungsten
PDF
Album
Supp Info
Letter
Published 16 Jul 2014

Molecular biology approaches in bioadhesion research

  • Marcelo Rodrigues,
  • Birgit Lengerer,
  • Thomas Ostermann and
  • Peter Ladurner

Beilstein J. Nanotechnol. 2014, 5, 983–993, doi:10.3762/bjnano.5.112

Graphical Abstract
  • ) allows for the elucidation of selected genes by their manipulation in vivo. These tools provide highly detailed molecular information about the adhesive-related proteins. This would impact mainly research on permanent adhesives made up of a combination of carbohydrates and proteins. Indeed, even
  • achieved by amputation, regeneration, collection of different developmental stages, or manipulation of the cellular (for instance by RNAi, see section 4) or physiological conditions. Successful collection of the starting material completely relies on an in-depth knowledge of the morphology of the adhesive
PDF
Album
Review
Published 08 Jul 2014

Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes

  • Jung-Ho Yun,
  • Il Ku Kim,
  • Yun Hau Ng,
  • Lianzhou Wang and
  • Rose Amal

Beilstein J. Nanotechnol. 2014, 5, 895–902, doi:10.3762/bjnano.5.102

Graphical Abstract
  • , the TNT morphology is beneficial to enhance the photovoltaic performances in the DSSCs by facilitating light scattering effects while enabling the manipulation of the tube length to accommodate for larger amounts of dye. For the understanding and characterization of the fundamental photovoltaic
PDF
Album
Full Research Paper
Published 24 Jun 2014

Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2014, 5, 822–836, doi:10.3762/bjnano.5.94

Graphical Abstract
  • tribological applications on the macro- to nanoscale and applications requiring controlled manipulation and targeting [25]. In these environments the nanoparticles can be deformed locally or the entire nanoparticle can be compressed. Knowledge of the mechanical properties and deformation mechanisms involved
PDF
Album
Full Research Paper
Published 11 Jun 2014

Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

  • Tatiana Borisova,
  • Natalia Krisanova,
  • Arsenii Borуsov,
  • Roman Sivko,
  • Ludmila Ostapchenko,
  • Michal Babic and
  • Daniel Horak

Beilstein J. Nanotechnol. 2014, 5, 778–788, doi:10.3762/bjnano.5.90

Graphical Abstract
  • of Kyiv, 64 Volodymyrska Str, Kiev, Ukraine The Department of Polymer Particles, Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic 10.3762/bjnano.5.90 Abstract The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs
  • . The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[14C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3
  • uptake and release; manipulation by an external magnetic field; D-mannose; membrane potential; nanoparticles; rat brain nerve terminals; synaptic vesicle acidification; Introduction Nanoparticles have great biotechnological potential opening a wide range of new applications. Properties of nanomaterials
PDF
Album
Full Research Paper
Published 04 Jun 2014

Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy: direct mechanical measurements and simulations

  • Jens Falter,
  • Marvin Stiefermann,
  • Gernot Langewisch,
  • Philipp Schurig,
  • Hendrik Hölscher,
  • Harald Fuchs and
  • André Schirmeisen

Beilstein J. Nanotechnol. 2014, 5, 507–516, doi:10.3762/bjnano.5.59

Graphical Abstract
  • precision. Recent achievements of this force spectroscopy method manifest in the identification of the chemical identity of single atoms in an alloy [2] or the measurement of the force applied during the controlled manipulation of molecules or atoms on a surface [3][4]. nc-AFM experiments at the atomic
PDF
Album
Full Research Paper
Published 23 Apr 2014

Energy dissipation in multifrequency atomic force microscopy

  • Valentina Pukhova,
  • Francesco Banfi and
  • Gabriele Ferrini

Beilstein J. Nanotechnol. 2014, 5, 494–500, doi:10.3762/bjnano.5.57

Graphical Abstract
  • energy dissipation is a fundamental aspect of the tip–sample interaction, allowing to quantify compositional contrast variations at the nanoscale [2]. The applied forces and the energy delivered to the sample are relevant for the imaging and the manipulation of soft materials in a variety of environments
PDF
Album
Correction
Full Research Paper
Published 17 Apr 2014

Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core–shell magnetic nanoparticles

  • M. Hennes,
  • A. Lotnyk and
  • S. G. Mayr

Beilstein J. Nanotechnol. 2014, 5, 466–475, doi:10.3762/bjnano.5.54

Graphical Abstract
  • heterostructured NP in gas condensation processes are discussed. Keywords: bimetallic magnetic nanoparticle; core–shell; magnetron sputtering; plasma gas condensation; Introduction Due to their size, novel physical properties and the possibility of contactless manipulation, magnetic nanoparticles can be employed
  • . This impedes any reasonable analytical description of growth processes in the condensation chamber. Our results also clearly highlight the influence of target morphology on particle growth. As was shown in earlier studies, shaping the plasma above the target by manipulation of the magnetic field can
PDF
Album
Full Research Paper
Published 14 Apr 2014

Exploring the complex mechanical properties of xanthan scaffolds by AFM-based force spectroscopy

  • Hao Liang,
  • Guanghong Zeng,
  • Yinli Li,
  • Shuai Zhang,
  • Huiling Zhao,
  • Lijun Guo,
  • Bo Liu and
  • Mingdong Dong

Beilstein J. Nanotechnol. 2014, 5, 365–373, doi:10.3762/bjnano.5.42

Graphical Abstract
  • persistence length were responsible for the macroscopic polymer behavior. Therefore, it is very important to investigate the mechanical response of polymer complexes after manipulation. In this study, the morphologies and mechanical properties of complex xanthan scaffolds, a new nanomaterial, were
  • fibril. Double and triple events curves (Figure 2B and Figure 2C) are characterized by two or three independent peaks, which indicate that the AFM tip fished two or three xanthan fibrils at the same time. Multiple events are usually observed during the manipulation at point P1 (Figure 2D), indicating
  • the same time during the manipulation. Figure 6A shows a typical double-event force curve composed of two independent single peaks. This kind of force curve was mainly obtained in manipulating the structures P1 and P2. The inset is a proposed model (in Figure 6A), in which two fibrils with different
PDF
Album
Full Research Paper
Published 27 Mar 2014

Noncontact atomic force microscopy II

  • Mehmet Z. Baykara and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2014, 5, 289–290, doi:10.3762/bjnano.5.31

Graphical Abstract
  • interatomic forces with unprecedented resolution in three spatial dimensions, while manipulation experiments at both low temperatures and room temperature have demonstrated the capability of the technique to controllably construct atomic-scale structures on surfaces. While initially small, the NC-AFM
PDF
Editorial
Published 12 Mar 2014

The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope

  • Christian Wagner,
  • Norman Fournier,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 202–209, doi:10.3762/bjnano.5.22

Graphical Abstract
  • -molecule manipulation has particularly promising potential to yield new insights. We recently reported experiments, in which 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) molecules were lifted with a qPlus-sensor and analyzed these experiments by using force-field simulations. Irrespective of the
  • good agreement between the experiment and those simulations, systematic inconsistencies remained that we attribute to effects omitted from the initial model. Here we develop a more realistic simulation of single-molecule manipulation by non-contact AFM that includes the atomic surface corrugation, the
  • tip elasticity, and the tip oscillation amplitude. In short, we simulate a full tip oscillation cycle at each step of the manipulation process and calculate the frequency shift by solving the equation of motion of the tip. The new model correctly reproduces previously unexplained key features of the
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2014

Manipulation of nanoparticles of different shapes inside a scanning electron microscope

  • Boris Polyakov,
  • Sergei Vlassov,
  • Leonid M. Dorogin,
  • Jelena Butikova,
  • Mikk Antsov,
  • Sven Oras,
  • Rünno Lõhmus and
  • Ilmar Kink

Beilstein J. Nanotechnol. 2014, 5, 133–140, doi:10.3762/bjnano.5.13

Graphical Abstract
  • and compared with the experimentally measured force. The effect of NP morphology on the nanoscale friction is discussed. Keywords: contact mechanics; nanomanipulation; nanoparticles; nanotribology; scanning electron microscopy (SEM); Introduction The manipulation of nanoparticles (NPs) is a powerful
  • studied in manipulation experiments based on atomic force microscopy (AFM), either in contact mode or dynamic mode [5][6]. Besides the undoubted advantages of AFM manipulation methods, such as a wide choice of materials (not limited to conductive materials), and high resolution and accuracy, they have
  • type of motion (sliding, rolling or rotation) during the manipulation event. It is possible to extract trajectory and motion type data from complete AFM images as it was recently demonstrated in several works [4][7][8][9]. However, such a process is time consuming, since it requires a large amount of
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2014
Other Beilstein-Institut Open Science Activities