Search results

Search for "plasmon resonance" in Full Text gives 205 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Au nanoparticle-based sensor for apomorphine detection in plasma

  • Chiara Zanchi,
  • Andrea Lucotti,
  • Matteo Tommasini,
  • Sebastiano Trusso,
  • Ugo de Grazia,
  • Emilio Ciusani and
  • Paolo M. Ossi

Beilstein J. Nanotechnol. 2015, 6, 2224–2232, doi:10.3762/bjnano.6.228

Graphical Abstract
  • frequency and width of the plasmon resonance, that can be tailored exploring wide intervals [26]. This makes them suitable for use as substrates for SERS, and in particular, to detect exiguous amounts of analyte with low-intensity Raman signatures or that are hindered by competitive fluorescence. A thorough
  •  1A show typical average sizes of such inter-island channels. SERS hinges on the strong interaction between noble metal NPs and visible light through the resonant collective excitation of NP conduction electrons. The resulting surface plasmon resonance peak [28] displays a maximum at about 780 nm
PDF
Album
Full Research Paper
Published 26 Nov 2015

Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines

  • Simona Bettini,
  • Emanuela Maglie,
  • Rosanna Pagano,
  • Victor Borovkov,
  • Yoshihisa Inoue,
  • Ludovico Valli and
  • Gabriele Giancane

Beilstein J. Nanotechnol. 2015, 6, 2154–2160, doi:10.3762/bjnano.6.221

Graphical Abstract
  • bis-porphyrin derivative. The Langmuir–Schaefer technique has been used to transfer the floating bis-porphyrin film (when using pure water as a subphase) to a surface plasmon resonance (SPR) substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM
  • were deposited on the SPR slide, and the shift of the SPR angle induced by the injection of amine aqueous solutions at different concentrations was monitored. The effect of aniline on the plasmon resonance of the Cu,H2-Por2 film could be detected when only 1 nM of analyte was fluxed over the active
  • -logarithmic trend was proposed [22][23][24]. The recovery of the SPR device was investigated. The initial plasmon resonance angle was obtained when the Cu,H2-Por2 LS film, previously exposed to aniline, was treated for 15 min at 50 °C and then washed with a flow of ultrapure water for 5 min. The response of
PDF
Album
Full Research Paper
Published 17 Nov 2015

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • defect, as imaged by STEM, can act as an atomic antenna in the frequency range of petahertz, and thus enhance the surface plasmon resonance locally. However, more recently, Nelson et al., after extracting the dielectric function from STEM–EELS spectra and comparing it with the calculated results [103
PDF
Album
Review
Published 16 Jul 2015

Formation of substrate-based gold nanocage chains through dealloying with nitric acid

  • Ziren Yan,
  • Ying Wu and
  • Junwei Di

Beilstein J. Nanotechnol. 2015, 6, 1362–1368, doi:10.3762/bjnano.6.140

Graphical Abstract
  • to their solid counterparts because of the high surface area, low density, and near-infrared localized surface plasmon resonance (LSPR). All these make Au NC an attractive material for various applications in optical [4][5] and electrochemical sensing [6], immunoassay [7], drug release [8], surface
  • solution on a copper grid. X-ray diffraction (XRD) analysis was performed by X’Pert-Pro MPD (Panalytical, Holland). The localized surface plasmon resonance (LSPR) spectra of nanoparticles were measured with a Shimadzu UV–vis–NIR 3600 Spectrophotometer against a bare ITO slide as the reference. SEM images
PDF
Album
Full Research Paper
Published 18 Jun 2015

Synthesis, characterization and in vitro effects of 7 nm alloyed silver–gold nanoparticles

  • Simon Ristig,
  • Svitlana Chernousova,
  • Wolfgang Meyer-Zaika and
  • Matthias Epple

Beilstein J. Nanotechnol. 2015, 6, 1212–1220, doi:10.3762/bjnano.6.124

Graphical Abstract
  • resonance peak shows one maximum due to the distribution of the metals throughout the whole particle. Core–shell nanoparticles or individual silver or gold nanoparticles show two distinct plasmon resonance peaks [21][36][37]. As it is depicted in Figure 3, the absorption spectra show only one narrow peak
  • plasmon resonance spectra against the molar fraction of Au or Ag. For a given particle size and surface functionalization, a linear relationship would indicate a macroscopically homogeneous distribution of the metals in the nanoparticles [21]. In Figure 4, the absorption maxima of the ≈10 nm nanoparticles
  • values were close to the theoretical compositions (Table 2). To confirm the alloying of the two metals, UV–vis spectra were recorded for all samples. From the spectra it is possible to gain information about the inner structure of the nanoparticles. In case of alloyed Ag/Au nanoparticles, the plasmon
PDF
Album
Full Research Paper
Published 27 May 2015

Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement

  • Zheren Du,
  • Lianwei Chen,
  • Tsung-Sheng Kao,
  • Mengxue Wu and
  • Minghui Hong

Beilstein J. Nanotechnol. 2015, 6, 1199–1204, doi:10.3762/bjnano.6.122

Graphical Abstract
  • nanoparticles exhibit localized surface plasmon resonance (LSPR), which is another possible way for local field enhancement to influence the light absorption and scattering [25]. Conclusion In this paper, we have studied that LAL is a promising technique to generate nanoparticles for various target materials
PDF
Album
Full Research Paper
Published 22 May 2015

Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

  • Kai Braun,
  • Xiao Wang,
  • Andreas M. Kern,
  • Hilmar Adler,
  • Heiko Peisert,
  • Thomas Chassé,
  • Dai Zhang and
  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2015, 6, 1100–1106, doi:10.3762/bjnano.6.111

Graphical Abstract
  • power, PIL < 25%, a high-gain regime for 25% < PIL < 75% and almost saturates for PIL > 75%. The intensity in the low-gain regime consists mainly of the luminescence from the plasmon resonance of the Au/Au-junction and the spectrum has a full width at half maximum of about 90 nm with very weak
  • scattered to the far field. While the gap modes plasmon resonance is very broad, exhibiting a quality factor of only Q ≈ 15, the resonantly stored energy in the optical near field in the gap is extremely well localized, in a volume having an upper limit of approximately 4 × 4 × 1 nm3 (see Figure S8
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2015

Patterning technique for gold nanoparticles on substrates using a focused electron beam

  • Takahiro Noriki,
  • Shogo Abe,
  • Kotaro Kajikawa and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2015, 6, 1010–1015, doi:10.3762/bjnano.6.104

Graphical Abstract
  • plasmon resonance (LSPR) are attracting attention for future optical transmission, sensor, and data processing devices. The development of these LSPR-based structures would lead to a reduction in the size of optical circuits and devices [1][2]. Light energy can be propagated through nanometer-sized wires
PDF
Album
Full Research Paper
Published 22 Apr 2015

Protein corona – from molecular adsorption to physiological complexity

  • Lennart Treuel,
  • Dominic Docter,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2015, 6, 857–873, doi:10.3762/bjnano.6.88

Graphical Abstract
  • adsorption such as isothermal titration calorimetry (ITC) [82][83], and surface plasmon resonance (SPR) [22][84]. Moreover, techniques based on the size of proteins and protein–NP complexes have been utilized such as size-exclusion chromatography (SEC) [85][86][87][88][89][90] or one- and two-dimensional
PDF
Album
Review
Published 30 Mar 2015

Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures

  • Alexander G. Milekhin,
  • Nikolay A. Yeryukov,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Victor A. Gridchin,
  • Evgeniya S. Sheremet and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2015, 6, 749–754, doi:10.3762/bjnano.6.77

Graphical Abstract
  • surface plasmon resonance energy enabling resonance SERS in absorbates deposited on the arrays [13][14][15][16][17]. Moreover, CuS NCs are resistant against intense laser excitation even under resonant conditions. This is important for micro-Raman experiments with the NCs on nanostructured Au arrays under
PDF
Album
Full Research Paper
Published 17 Mar 2015

Electromagnetic enhancement of ordered silver nanorod arrays evaluated by discrete dipole approximation

  • Guoke Wei,
  • Jinliang Wang and
  • Yu Chen

Beilstein J. Nanotechnol. 2015, 6, 686–696, doi:10.3762/bjnano.6.69

Graphical Abstract
  • under the s-polarized and the p-polarized excitations are also depicted in Figure 2, in which the propagation direction of the light is perpendicular to the long axis of the nanorod. A major plasmon resonance peak centred at 360 nm is found under the excitation of s-polarization, along with a broad
  • shows a similar trend against AR as EFavg does. Effect of the excitation wavelength Since the SERS effect is a near-field phenomenon and related to the localized surface plasmon resonance (LSPR) of the nanostructures, it is expected to exhibit a behavior that depends on the excitation wavelength. Here
  • the vertical AgNR arrays. It has been revealed that different modes of surface plasmon resonance can only be excited by certain angles of incidence, leading to different near-field enhancements [23][33]. Effect of incident polarization Figure 9a shows the polarization dependence of EFavg from S42 AgNR
PDF
Album
Full Research Paper
Published 09 Mar 2015

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

  • Ulrike Taylor,
  • Daniela Tiedemann,
  • Christoph Rehbock,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2015, 6, 651–664, doi:10.3762/bjnano.6.66

Graphical Abstract
  • nanotoxicology on reproductive cells provides an ideal tool. Schematic representation of experiments conducted within the collaboration project REPROTOX. (A) Exemplary AuAg colloids with different molar fractions. (B) Correlation of gold molar fraction with the maximum surface plasmon resonance extinction peak
PDF
Album
Video
Full Research Paper
Published 05 Mar 2015

Synergic combination of the sol–gel method with dip coating for plasmonic devices

  • Cristiana Figus,
  • Maddalena Patrini,
  • Francesco Floris,
  • Lucia Fornasari,
  • Paola Pellacani,
  • Gerardo Marchesini,
  • Andrea Valsesia,
  • Flavia Artizzu,
  • Daniela Marongiu,
  • Michele Saba,
  • Franco Marabelli,
  • Andrea Mura,
  • Giovanni Bongiovanni and
  • Francesco Quochi

Beilstein J. Nanotechnol. 2015, 6, 500–507, doi:10.3762/bjnano.6.52

Graphical Abstract
  • an extended time and inducing a suitable reduction of the regeneration time of the chip. Keywords: biosensors; nanodevices; plasmonics; sol–gel; thin films; Introduction Plasmonic nanostructures have gained increasing attention for their surface plasmon resonance (SPR)-related properties, which can
PDF
Album
Full Research Paper
Published 19 Feb 2015

Hollow plasmonic antennas for broadband SERS spectroscopy

  • Gabriele C. Messina,
  • Mario Malerba,
  • Pierfrancesco Zilio,
  • Ermanno Miele,
  • Michele Dipalo,
  • Lorenzo Ferrara and
  • Francesco De Angelis

Beilstein J. Nanotechnol. 2015, 6, 492–498, doi:10.3762/bjnano.6.50

Graphical Abstract
  • based on surface enhanced Raman scattering (SERS) enhancement [1][2][3], fluorescence [4][5], the surface plasmon resonance effect [6][7], mapping and imaging [8][9][10], to nanotechnology, with several works related to nanolithography [11][12], nanofocusing [13][14], nanolasers [15][16], waveguides [17
PDF
Album
Full Research Paper
Published 18 Feb 2015

Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

  • Alberto Milani,
  • Matteo Tommasini,
  • Valeria Russo,
  • Andrea Li Bassi,
  • Andrea Lucotti,
  • Franco Cataldo and
  • Carlo S. Casari

Beilstein J. Nanotechnol. 2015, 6, 480–491, doi:10.3762/bjnano.6.49

Graphical Abstract
  • from NIR (1064 nm) to blue (458 nm) wavelengths, illustrating that this is not a resonance-activated effect [39]. When interacting with metal nanoparticles in solution, H-terminated polyynes promote colloid aggregation, which causes the plasmon resonance to broaden and shift from the visible to the NIR
PDF
Album
Review
Published 17 Feb 2015

Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity

  • Kah Hon Leong,
  • Hong Ye Chu,
  • Shaliza Ibrahim and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2015, 6, 428–437, doi:10.3762/bjnano.6.43

Graphical Abstract
  • with controlled Pd NPs size ranging between 17 and 29 nm onto the surface of TiO2. Thus, it gives the characteristic for Pd NPs to absorb light in the visible region obtained through localized surface plasmon resonance (LSPRs). Apparently, the photocatalytic activity of the prepared photocatalysts was
  • most promising strategy to defeat the limitations of TiO2. This is due to the characteristics of noble metals, which can drastically enhance the absorption of visible light through localized surface plasmon resonance effects (LSPRs) [23][24]. The LSPR absorption in noble metal NPs arise from the
  • efficiency was achieved by depositing Pd NPs on the surface of TiO2. This immense progress was attributed to the localized surface plasmon resonance that enables Pd NPs to absorb light in the visible region. This is attributed to an optical excitation that produces a coherent oscillation of free electrons in
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2015

Influence of size, shape and core–shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx

  • Sergio D’Addato,
  • Daniele Pinotti,
  • Maria Chiara Spadaro,
  • Guido Paolicelli,
  • Vincenzo Grillo,
  • Sergio Valeri,
  • Luca Pasquali,
  • Luca Bergamini and
  • Stefano Corni

Beilstein J. Nanotechnol. 2015, 6, 404–413, doi:10.3762/bjnano.6.40

Graphical Abstract
  • atmosphere gave rise to formation of a MgO shell matrix surrounding the Ag NPs. The behaviour of the surface plasmon resonance (SPR) excitation in surface differential reflectivity (SDR) spectra with p-polarised light was investigated for bare Ag and Ag@MgO NPs. It was shown that the presence of MgO around
  • ; surface differential reflectivity; surface plasmon resonance; Introduction Nanoparticles (NPs) deposited on surfaces constitute a vast and important research field in material science having many applications in magnetic recording [1][2], catalysis [3], and photovoltaics [4][5][6][7][8][9]. For instance
  • , it was found that Au NPs [5] and Ag NPs [6] deposited on thin film- and wafer-based Si solar cells can enhance their photon absorption due to the occurrence of surface plasmon resonance (SPR), which serves to scatter the incident radiation in the UV–vis region and to increase the light trapping
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2015

Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

  • Jes Ærøe Hyllested,
  • Marta Espina Palanco,
  • Nicolai Hagen,
  • Klaus Bo Mogensen and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2015, 6, 293–299, doi:10.3762/bjnano.6.27

Graphical Abstract
  • relatively simple way by using extracts of oranges and pineapples as reducing agents. Size and shape of the particles depend mainly on the kind of fruit used in the chemical preparation process. The UV–vis absorption spectrum displays the surface plasmon resonance and also features in the UV, which can be
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2015

Mechanical properties of MDCK II cells exposed to gold nanorods

  • Anna Pietuch,
  • Bastian Rouven Brückner,
  • David Schneider,
  • Marco Tarantola,
  • Christina Rosman,
  • Carsten Sönnichsen and
  • Andreas Janshoff

Beilstein J. Nanotechnol. 2015, 6, 223–231, doi:10.3762/bjnano.6.21

Graphical Abstract
  • monolayer after incubation with CTAB-coated gold nanorods at different concentrations. Particles as well as aggregates are easily discernible due to their plasmon resonance. The particles arrange predominantly around the nucleus but are usually not found inside the nucleus. Recently, we carried out optical
PDF
Album
Full Research Paper
Published 20 Jan 2015

Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite

  • Ilka Kriegel and
  • Francesco Scotognella

Beilstein J. Nanotechnol. 2015, 6, 193–200, doi:10.3762/bjnano.6.18

Graphical Abstract
  • : active optical component; electronic band gap nanostructure; localized surface plasmon resonance; photonic crystal; Introduction Optical filters are fundamental components employed in almost all optical setups and devices. For example, they play a very important role in microfluidic devices, which are
  • of doped semiconductor nanostructures is the option to chemically and electrochemically modify their plasmon resonance frequencies by changing the material’s carrier density. For copper chalcogenide NCs, chemical manipulation has been demonstrated in response to oxidizing and reducing treatments [27
  • absorption was triggered through the addition of chemical agents, inducing oxidation and reduction. This in turn leads to a variation of the carrier density and a blue shift (for oxidation) or red shift (for reduction) of the plasmon resonance over a wide range of frequencies. Such observation underlines
PDF
Album
Supp Info
Full Research Paper
Published 16 Jan 2015

The fate of a designed protein corona on nanoparticles in vitro and in vivo

  • Denise Bargheer,
  • Julius Nielsen,
  • Gabriella Gébel,
  • Markus Heine,
  • Sunhild C. Salmen,
  • Roland Stauber,
  • Horst Weller,
  • Joerg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 36–46, doi:10.3762/bjnano.6.5

Graphical Abstract
  • experimental setups. Various techniques such as ITC (isothermal titration calorimetry), SPR (surface plasmon resonance), DCS (differential centrifugal sedimentation), QCM (quartz crystal microbalance), and FCS (fluorescence correlation spectroscopy) have been used to monitor the affinities of proteins for
PDF
Album
Full Research Paper
Published 06 Jan 2015

Exploring plasmonic coupling in hole-cap arrays

  • Thomas M. Schmidt,
  • Maj Frederiksen,
  • Vladimir Bochenkov and
  • Duncan S. Sutherland

Beilstein J. Nanotechnol. 2015, 6, 1–10, doi:10.3762/bjnano.6.1

Graphical Abstract
  • compared to separated arrays of holes or caps. Optical spectroscopy and FDTD simulations reveal strong coupling between the gold caps and both Bloch Wave-surface plasmon polariton (BW-SPP) modes and localized surface plasmon resonance (LSPR)-type resonances in hole arrays when they are in close proximity
  • . The interesting and complex coupling between caps and hole arrays reveals the details of the field distribution for these simple to fabricate structures. Keywords: caps; colloidal lithography; hybridization; localized surface plasmon resonance; near field; SRO hole arrays; Introduction The
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2015

SERS and DFT study of copper surfaces coated with corrosion inhibitor

  • Maurizio Muniz-Miranda,
  • Francesco Muniz-Miranda and
  • Stefano Caporali

Beilstein J. Nanotechnol. 2014, 5, 2489–2497, doi:10.3762/bjnano.5.258

Graphical Abstract
  • substrate must exhibit a surface roughness at the nanometer level. In these nanoscale structures, the excitation of electrons from the metal surface by laser irradiation can be confined, resulting in plasmon resonance [16]. The existence of this resonance is a necessary condition to observe a SERS signal by
PDF
Album
Full Research Paper
Published 29 Dec 2014

Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

  • Christina Rosman,
  • Sebastien Pierrat,
  • Marco Tarantola,
  • David Schneider,
  • Eva Sunnick,
  • Andreas Janshoff and
  • Carsten Sönnichsen

Beilstein J. Nanotechnol. 2014, 5, 2479–2488, doi:10.3762/bjnano.5.257

Graphical Abstract
  • ; gold; nanoparticles; Introduction Over the last decade, the biomedical applications for gold nanoparticles have become increasingly diverse due to their small size and plasmonic nature [1]. The plasmon resonance wavelength of the nanoparticle, which exhibits strong light scattering and absorption, can
PDF
Album
Supp Info
Full Research Paper
Published 24 Dec 2014

Proinflammatory and cytotoxic response to nanoparticles in precision-cut lung slices

  • Stephanie Hirn,
  • Nadine Haberl,
  • Kateryna Loza,
  • Matthias Epple,
  • Wolfgang G. Kreyling,
  • Barbara Rothen-Rutishauser,
  • Markus Rehberg and
  • Fritz Krombach

Beilstein J. Nanotechnol. 2014, 5, 2440–2449, doi:10.3762/bjnano.5.253

Graphical Abstract
  • muscle of living mice [44]. This technique allowed us to record images of Ag-NPs and lung tissue without additional labelling, since Ag-NPs exhibit strong two-photon-induced photoluminescence and enhanced THG signals through surface plasmon resonance [45][46]. As shown by multiphoton microscopy, the Ag
PDF
Album
Full Research Paper
Published 18 Dec 2014
Other Beilstein-Institut Open Science Activities