Search results

Search for "proteins" in Full Text gives 382 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • having chiral ʟ-serine and ʟ-threonine to discriminate enantiomers of N-acetyl amino acid anions through ratiometric fluorescence analysis. Torsi and co-workers adopted odorant binding proteins to discriminate chiral substances [90]. They immobilized odorant binding proteins to the gate of a water-gated
  • receptors and enzymes, and macromolecular interfaces at DNA and proteins. This mechanism for the enhancement of the molecular recognition capability at interfaces is surely applicable to other molecular recognition pairs and should also lead to highly efficient molecular recognition of various aqueous
  • nanoarchitectonics concept and its contributions to sensor design and fabrication. A water-gated bio-organic transistor with odorant binding proteins for the discrimination of chiral substances. Highly sensitive humidity sensor based on a triboelectric nanogenerator device where nanochannels in the membrane adsorb
PDF
Album
Review
Published 16 Oct 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • purification of the antibody-labeled particles suggesting successful modification of their exterior surface. This observed increase in the hydrodynamic radius is consistent with the previous report of particles coated with proteins [39]. In addition, the UV–vis spectrum was used to evaluate the surface
  • modification with proteins [40] and indicates that the surface of the Au-CPMV particles is “smooth”. The shift would be greater if the surface had an uneven shape. In addition, the 4 nm red-shift of the LSPR peak suggests that the modification of the Au-CPMV surface with antibodies has been successful. This
PDF
Album
Full Research Paper
Published 07 Oct 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • coated nanoparticles compared to the uncoated nanoparticles [23][24]. According to XRD and TEM, the HSA-coated and uncoated nanoparticles have a similar size, shape, crystal structure and phase composition. Since the nonmagnetic HSA proteins separate the coated particles from each other, the magnetic
PDF
Album
Full Research Paper
Published 02 Oct 2019

Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells

  • Liang Xu,
  • Dekang Xu,
  • Ziying Li,
  • Yu Gao and
  • Haijun Chen

Beilstein J. Nanotechnol. 2019, 10, 1933–1942, doi:10.3762/bjnano.10.189

Graphical Abstract
  • easily. The cyano group in P2 might increase the binding capability of P2 to specific proteins to improve its anticancer potency. Figure 2A shows that Di and P2 could suppress the cell viability in a dosage-dependent manner in A549 and PC9 cells. All the results demonstrated that P2 had much stronger
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2019

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting

  • Xianping Liu,
  • Chengjuan Du,
  • Haichun Li,
  • Ting Jiang,
  • Zimiao Luo,
  • Zhiqing Pang,
  • Daoying Geng and
  • Jun Zhang

Beilstein J. Nanotechnol. 2019, 10, 1860–1872, doi:10.3762/bjnano.10.181

Graphical Abstract
  • proteins, resulting in the formation of protein corona [48][49]. To minimize the adverse effects of the presence of the protein corona in vivo, the surface coating using PEG can endow the NPs with so-called “stealth” properties to reduce the adsorption of high molecular weight proteins, allowing them to
PDF
Album
Full Research Paper
Published 11 Sep 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • molecules and proteins of the cellular membrane and a lower amount of substance [2][43][44]. In this work, the evaluation of the antibacterial activity of CSTiO2 with a spherical morphology and nanoscale-thickness of approximately 17 nm was evaluated and compared with traditional TiO2 NPs. The reduction of
  • reactive oxygen species (ROS) generation and disruption of bacteria cell walls in the case of E. coli, and release and reactions of ions with thiol groups belonging to proteins of the bacterial membrane of S. aureus [48][49]. Probably, CSTiO2 presented better affinity and greater contact area with Gram
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Chiral nanostructures self-assembled from nitrocinnamic amide amphiphiles: substituent and solvent effects

  • Hejin Jiang,
  • Huahua Fan,
  • Yuqian Jiang,
  • Li Zhang and
  • Minghua Liu

Beilstein J. Nanotechnol. 2019, 10, 1608–1617, doi:10.3762/bjnano.10.156

Graphical Abstract
  • , Beijing 100049, China Laboratory for Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China 10.3762/bjnano.10.156 Abstract Chiral nanostructures, such as α-helical proteins and double helix DNA, are widely
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • including drugs, proteins, and enzymes [14][15][16][17][18], even serving as nanoreactor for chemical processes [19]. Of particular interest is the use of HNTs for the uptake of enzymes in an approach for the development of (bio)electrochemical devices like biosensors and enzymatic biofuel cells (EBCs) [20
  • the inactivity of the entrapped enzyme. This is probably due to the direct interaction of the enzyme with sepiolite and shows the necessity to load the enzyme into the clay nanotubes. It is well known that the electrostatic interaction of proteins with the external surface of sepiolite can be very
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles

  • Katrin Partikel,
  • Robin Korte,
  • Dennis Mulac,
  • Hans-Ulrich Humpf and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 1002–1015, doi:10.3762/bjnano.10.101

Graphical Abstract
  • /bjnano.10.101 Abstract Background: When nanoparticles (NPs) are applied into a biological fluid, such as blood, proteins bind rapidly to their surface forming a so-called “protein corona”. These proteins are strongly attached to the NP surface and confers them a new biological identity that is crucial
  • leading to a concentration-dependent desorption of abundant proteins in conjunction with an adsorption of high-affinity proteins with lower abundance. Cell incubation experiments revealed that the respective corona composition showed significant influence on the resulting nanoparticle–cell interaction
  • few NPs have made it to clinical trials or market maturity [2][3]. One possible reason is the limited understanding of the interaction occurring at the interface between NPs and the physiological surrounding [3]. Once in contact with biological fluids, such as blood, proteins adsorb onto the surface
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • sensor with the desired selectivity and sensitivity to the targeted species. Selectivity mainly depends on the specificity of the receptor (e.g., for proteins, aptamers or antibodies) to the targeted species and the non-specific binding degree of other species that can be achieved; effective
  • functionalization platforms. On one hand, graphene containing defects (COOH groups) can be covalently functionalized by using an EDC/NHS zero-cross linker, which allows for the binding of primary amines present in proteins and antibodies [11][12]. On the other hand, defect-free graphene is highly hydrophobic, and
PDF
Album
Full Research Paper
Published 29 Apr 2019

Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures

  • Jad Sabek,
  • Francisco Javier Díaz-Fernández,
  • Luis Torrijos-Morán,
  • Zeneida Díaz-Betancor,
  • Ángel Maquieira,
  • María-José Bañuls,
  • Elena Pinilla-Cienfuegos and
  • Jaime García-Rupérez

Beilstein J. Nanotechnol. 2019, 10, 967–974, doi:10.3762/bjnano.10.97

Graphical Abstract
  • of proteins. As the sensing in this type of structures is governed by the interaction between the evanescent field going into the cladding and the target analytes, scanning near-field optical microscopy has been used to characterize the profile of that evanescent field. The study confirms the strong
  • . Conclusion We have developed a photonic biosensor based on PBG sensing structures for the specific detection of proteins. First, we have performed a study of the evanescent field profile in these sensing structures, since its interaction with the target analytes will determine the sensing performance of the
PDF
Album
Full Research Paper
Published 26 Apr 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • , proliferation and inflammation in rBCEC4 cells Possible changes in protein expression representing inhibition or activation of several crucial proteins of different signaling pathways involved in regulatory processes including cell survival and proliferation were investigated with western blotting. The active
  • , phosphorylated (P-) form of the proteins of interest was compared to their inactive, non-phosphorylated form. Protein kinase B (Akt) could be detected in its inactive and active form but neither exposure to Si- nor to Au-NPs caused significant changes in its expression. However, a trend to an increase in P-Akt
  • Figure 4B. Neither Si- nor Au-NPs led to differences in activation or expression of NF-κB. Both forms could be detected for this protein (Figure 4C). Expression of tight-junction proteins in rBCEC4 cells Immunofluorescence staining and TEM were used to demonstrate the expression of important BBB
PDF
Album
Full Research Paper
Published 25 Apr 2019

The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model

  • Qura Tul Ain,
  • Samina Hyder Haq,
  • Abeer Alshammari,
  • Moudhi Abdullah Al-Mutlaq and
  • Muhammad Naeem Anjum

Beilstein J. Nanotechnol. 2019, 10, 901–911, doi:10.3762/bjnano.10.91

Graphical Abstract
  • ability of PEGylated GO (PEG-GO) to deliver proteins into cells [26]. In addition, functionalized PEG-GO has been used as a nano-carrier of photosensitizers and synergistic anticancer agents [27]. PEG-GO has been widely used in vivo studies. Li et al. demonstrated that PEG coating reduced the retention of
  • generating free radicals [49]. These free radicals can attack the surrounding biological molecules such as proteins, lipids and even DNA, which could result in a loss or damage of their biological function. In the body of mammals, there are antioxidants to counter these free radicals and protect tissues from
PDF
Album
Full Research Paper
Published 18 Apr 2019

Outstanding chain-extension effect and high UV resistance of polybutylene succinate containing amino-acid-modified layered double hydroxides

  • Adam A. Marek,
  • Vincent Verney,
  • Christine Taviot-Gueho,
  • Grazia Totaro,
  • Laura Sisti,
  • Annamaria Celli and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2019, 10, 684–695, doi:10.3762/bjnano.10.68

Graphical Abstract
  • structurally well ordered organic species. Tentatively it may be ascribed to some degradative effect coming from the imidazole cycle since there is no such effect for the other PBS composites. It is well known that imidazole cycle is prone to coordinate to metal ions as in metallo-proteins [21]. The
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2019

Mechanical and thermodynamic properties of Aβ42, Aβ40, and α-synuclein fibrils: a coarse-grained method to complement experimental studies

  • Adolfo B. Poma,
  • Horacio V. Guzman,
  • Mai Suan Li and
  • Panagiotis E. Theodorakis

Beilstein J. Nanotechnol. 2019, 10, 500–513, doi:10.3762/bjnano.10.51

Graphical Abstract
  • experimental observations. Keywords: β-amyloid; atomic force microscopy, mechanical deformation; molecular simulation; proteins; α-synuclein; Introduction All-atom molecular dynamics (MD) simulations have been employed to study the physical and chemical behaviour of the fundamental biomolecules of life (e.g
  • ., proteins [1], nucleic acids [2] and lipids [3]). Lipid membranes, viral capsids, and biological fibrils are common examples of large complexes that pose significant challenges for all-atom simulations. For example, the time scales of various biological processes are in the range from 10−6 to 10−3 s, and
  • certain conditions, the high mechanical stability (comparable to silk), and the ability to form ordered structures, albeit the monomeric units (proteins) of these fibrils are intrinsically disordered [21][22]. These are fundamental properties for applications in which the fragmentation of the material
PDF
Album
Full Research Paper
Published 19 Feb 2019

Mechanism of silica–lysozyme composite formation unravelled by in situ fast SAXS

  • Tomasz M. Stawski,
  • Daniela B. van den Heuvel,
  • Rogier Besselink,
  • Dominique J. Tobler and
  • Liane G. Benning

Beilstein J. Nanotechnol. 2019, 10, 182–197, doi:10.3762/bjnano.10.17

Graphical Abstract
  • inorganic nanoparticles (NPs) and proteins in aqueous media is of paramount interest for colloid chemistry. In particular, the interactions between silica (SiO2) NPs and lysozyme (LZM) have attracted attention, because LZM is well-known to adsorb strongly to silica NPs, while at the same time preserving its
  • : composite; lysozyme; scattering; silica; small-angle X-ray scattering (SAXS); Introduction A mechanistic understanding of aggregation in aqueous media leading to the formation of composites of inorganic nanoparticles and proteins is of paramount interest for colloid chemistry, Earth sciences, or the design
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2019

Targeting strategies for improving the efficacy of nanomedicine in oncology

  • Gonzalo Villaverde and
  • Alejandro Baeza

Beilstein J. Nanotechnol. 2019, 10, 168–181, doi:10.3762/bjnano.10.16

Graphical Abstract
  • transport drugs that exhibit very different nature such as lipophilic or hydrophilic drugs and big macromolecules as proteins or RNA. Moreover, the external surface of these carriers can be decorated with different moieties with high affinity for specific membrane receptors of the tumoral cells to direct
  • proteins. This fact hinders the penetration of the nanoparticles into tumoral tissues restraining their effect to the periphery of the neoplasia. In order to overcome this limitation, diverse alternatives have been proposed, from the application of ultrasounds for propelling the nanoparticles inside the
  • significant enhancement of the particle uptake due to multiple binding processes with tumoral receptors through a multivalence effect [25]. Nature usually employs antibodies for the recognition of cells and pathogenic bodies. Antibodies are large proteins that present a characteristic Y-shaped structure in
PDF
Album
Review
Published 14 Jan 2019

A comparison of tarsal morphology and traction force in the two burying beetles Nicrophorus nepalensis and Nicrophorus vespilloides (Coleoptera, Silphidae)

  • Liesa Schnee,
  • Benjamin Sampalla,
  • Josef K. Müller and
  • Oliver Betz

Beilstein J. Nanotechnol. 2019, 10, 47–61, doi:10.3762/bjnano.10.5

Graphical Abstract
  • fraction has been investigated so far, polar components such as proteins/peptides and carbohydrates might contribute to its amphiphilic property. Directionality of friction force Our nanotribometer experiments (performed on the fore tarsi) clearly revealed a direction-dependent (anisotropic) friction
PDF
Album
Full Research Paper
Published 04 Jan 2019

Hybrid Au@alendronate nanoparticles as dual chemo-photothermal agent for combined cancer treatment

  • Anouchka Plan Sangnier,
  • Romain Aufaure,
  • Laurence Motte,
  • Claire Wilhelm,
  • Erwann Guenin and
  • Yoann Lalatonne

Beilstein J. Nanotechnol. 2018, 9, 2947–2952, doi:10.3762/bjnano.9.273

Graphical Abstract
  • . They inhibit the prenylation of GTPase proteins, which affects cell morphology, replication and signalling that can cause cell death by apoptosis [8][9]. However, the in vivo therapeutic use of HMBPs is limited by low bioavailability. Once intravenously injected, free HMBPs are only slightly
PDF
Album
Supp Info
Letter
Published 27 Nov 2018

Nanostructured liquid crystal systems and applications

  • Alexei R. Khokhlov and
  • Alexander V. Emelyanenko

Beilstein J. Nanotechnol. 2018, 9, 2644–2645, doi:10.3762/bjnano.9.245

Graphical Abstract
  • well as in food production. The molecules of the human body (e.g., DNA, proteins) can also form liquid crystal phases. Many applications of liquid crystals require the manipulation of structures on the nanometer scale. For example, these highly sensitive materials are capable of changing their
PDF
Editorial
Published 05 Oct 2018

Cytotoxicity of doxorubicin-conjugated poly[N-(2-hydroxypropyl)methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells

  • Zdeněk Plichta,
  • Yulia Kozak,
  • Rostyslav Panchuk,
  • Viktoria Sokolova,
  • Matthias Epple,
  • Lesya Kobylinska,
  • Pavla Jendelová and
  • Daniel Horák

Beilstein J. Nanotechnol. 2018, 9, 2533–2545, doi:10.3762/bjnano.9.236

Graphical Abstract
  • allows for a stable Dox concentration inside the cells, thus partially decreasing the effectiveness of ABC transporter proteins, which are responsible for drug efflux from the cytosol to the extracellular medium [24]. Other cell lines that are sensitive to chemotherapy (e.g., murine B16F10 melanoma
PDF
Album
Full Research Paper
Published 25 Sep 2018

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • cell death involves the generation of intracellular reactive oxygen species (ROS) molecules (e.g., O2−, OH·, H2O2) [44]. The elevated level of ROS species interferes with the normal metabolism of the cells by disrupting cell structures such as lipids, proteins and DNA [45]. This increased oxidative
  • apoptotic induction upon CaP@5-FU NP incubation occurred inside the cells. The 5-FU-mediated inhibition of the thymidylate synthase causes the release of cytochrome c from mitochondria through the mitochondrial membrane channel by the interaction of BAX and BAK proteins. Located on the outer mitochondrial
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

High-throughput micro-nanostructuring by microdroplet inkjet printing

  • Hendrikje R. Neumann and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2018, 9, 2372–2380, doi:10.3762/bjnano.9.222

Graphical Abstract
  • also proteins [23][24][25][26][27]. In this way, even flexible materials can easily be patterned [28]. Therefore, with this method, we have the combined benefits of BCML with the advantages of inkjet printing to achieve nanoparticle structures in defined microarrays. Such micro-nanostructures have been
  • be controlled at the micrometer scale. For example, the nanoparticles can serve as biomimetic anchorage sites for proteins in biosensor and biomaterial applications. Experimental Block copolymer micelle nanolithography (BCML) The samples were functionalized with gold nanoparticles using BCML [13][22
PDF
Album
Full Research Paper
Published 04 Sep 2018

Nanoscale characterization of the temporary adhesive of the sea urchin Paracentrotus lividus

  • Ana S. Viana and
  • Romana Santos

Beilstein J. Nanotechnol. 2018, 9, 2277–2286, doi:10.3762/bjnano.9.212

Graphical Abstract
  • functional amyloid, suggesting that among its proteinaceous constituents there are most likely proteins with amyloid quaternary structures or rich in β-sheets. These results extend our knowledge on sea urchin adhesive composition and mechanical properties essential for the engineering of biomimetic adhesives
  • characteristic sawtooth appearance [4]. The freshwater cnidarian Hydra magnipapillata is a solitary polyp that lives temporarily attached during its whole lifecycle through its aboral adhesive disc, only detaching to search for better living conditions. The adhesive of H. magnipapillata is made up of proteins
  • allowing the sea cucumber to escape. During the elongation process, granular cells are exposed at the tubule surface and release their adhesive secretion composed of proteins and neutral sugars. However, the tissue integrity is compromised during the discharge and can only be used once. AFM was used to
PDF
Album
Full Research Paper
Published 24 Aug 2018
Other Beilstein-Institut Open Science Activities