Search results

Search for "targeting" in Full Text gives 198 result(s) in Beilstein Journal of Nanotechnology.

Multiwalled carbon nanotube hybrids as MRI contrast agents

  • Nikodem Kuźnik and
  • Mateusz M. Tomczyk

Beilstein J. Nanotechnol. 2016, 7, 1086–1103, doi:10.3762/bjnano.7.102

Graphical Abstract
  • their potential as CAs exclusively in one of the MRI modes (T1 or T2). Further requirements consisted in better biocompatibility with the targeting of tumor cells, coupling with stem cells as well as crossing the cell membrane and blood–brain barrier. Finally, involving CNT activity in other diagnostic
  • on their specificity of targeting to desired organs [49][50]. However, the negative CAs, routinely represented by SPIOs [46], also have their targets. The acceleration efficiency is expressed by the relaxivities r1 and r2, which are calculated as the reciprocal relaxation time effect caused by a unit
  • exhibit high over-expression of the folate receptor, the targeting effect was remarkable and was found to reach 64% signal enhancement in reference to 45% for the non-functionalized hybrids. Lamanna and Vittorio were able to localize the marked cells by their darkened contrast and emphasized the unique
PDF
Album
Supp Info
Review
Published 27 Jul 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • dyes for imaging purposes either tracing the virus itself, or targeting specific cells or organs [73][74][75][76], antigens for the development of vaccines as reviewed in great detail [77][78][79], drugs or imaging reagents for increasingly elaborated biomedical applications [80][81][82] with numerous
  • , energy conversion, plasmonics or magnetic resonance imaging [82][92][100][114][115][116][117][118][119][120][121], and as carrier rods for effector peptides for distinct purposes from affinity binding, intravital targeting up to cell-culture supports [105][111][117][122][123][124], or as antigens for
PDF
Album
Review
Published 25 Apr 2016

Investigating organic multilayers by spectroscopic ellipsometry: specific and non-specific interactions of polyhistidine with NTA self-assembled monolayers

  • Ilaria Solano,
  • Pietro Parisse,
  • Ornella Cavalleri,
  • Federico Gramazio,
  • Loredana Casalis and
  • Maurizio Canepa

Beilstein J. Nanotechnol. 2016, 7, 544–553, doi:10.3762/bjnano.7.48

Graphical Abstract
  • as the delivery of polymeric gene vehicles [29] or for the design of NTA-functionalized fluorescent probes able to track cellular events in situ by targeting specific His-tagged proteins [30][31]. Beyond selectivity, the reversibility of the NTA–Ni(II)-His coupling upon reaction with competitive
PDF
Album
Full Research Paper
Published 13 Apr 2016

Comparison of the interactions of daunorubicin in a free form and attached to single-walled carbon nanotubes with model lipid membranes

  • Dorota Matyszewska

Beilstein J. Nanotechnol. 2016, 7, 524–532, doi:10.3762/bjnano.7.46

Graphical Abstract
  • between targeting agents and their receptors, such as for example folates and transferrin [7][8]. Additionally, liposomes are also prepared in such a way that simultaneous loading of two drugs into a liposome in order to improve the efficiency of the treatment is possible [9]. Dual drug loading is also
  • -stranded DNA or RNA sequences showing high specificity and affinity to their targets, which were employed as molecular targeting agents for targeted drug transport. Carbon nanotubes (CNTs) are among the promising drug delivery systems. They attract scientists’ attention due to their properties such as
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2016

pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles

  • Manuel Häuser,
  • Klaus Langer and
  • Monika Schönhoff

Beilstein J. Nanotechnol. 2015, 6, 2504–2512, doi:10.3762/bjnano.6.260

Graphical Abstract
  • ] or improved drug targeting. These optimization procedures are generally performed after particle assembly, since the nanoparticle formation is influenced by many parameters and often limited by minor changes in the experimental setup. However, several further surface modifications are well
PDF
Album
Full Research Paper
Published 30 Dec 2015

Chemiresistive/SERS dual sensor based on densely packed gold nanoparticles

  • Sanda Boca,
  • Cosmin Leordean,
  • Simion Astilean and
  • Cosmin Farcau

Beilstein J. Nanotechnol. 2015, 6, 2498–2503, doi:10.3762/bjnano.6.259

Graphical Abstract
  • folic acid molecules. Folic acid is a low molecular weight vitamin compound, which has been shown to be an effective targeting vector of various cancer cell lines which over-express folate receptors [7]. It also proved to be an effective capping ligand for linking onto various polymer backbones or
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2015

Analyzing collaboration networks and developmental patterns of nano-enabled drug delivery (NEDD) for brain cancer

  • Ying Huang,
  • Jing Ma,
  • Alan L. Porter,
  • Seokbeom Kwon and
  • Donghua Zhu

Beilstein J. Nanotechnol. 2015, 6, 1666–1676, doi:10.3762/bjnano.6.169

Graphical Abstract
  • conjugates and so on [6][7][8]. Among these, the brain tumor-targeting drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in the normal brain and peripheral tissue, are a promising new approach [9]. Collaboration fosters interactions between different actors
PDF
Album
Full Research Paper
Published 31 Jul 2015

Natural and artificial binders of polyriboadenylic acid and their effect on RNA structure

  • Giovanni N. Roviello,
  • Domenica Musumeci,
  • Valentina Roviello,
  • Marina Pirtskhalava,
  • Alexander Egoyan and
  • Merab Mirtskhulava

Beilstein J. Nanotechnol. 2015, 6, 1338–1347, doi:10.3762/bjnano.6.138

Graphical Abstract
  • under investigation. A possibility to achieve the desired selectivity involves the conjugation of these binders with molecules (targeting agents) specific for receptors overexpressed on cancer cells in analogy to the work of Guaragna et al. concerning folate-conjugated drugs [21]. In this way the
  • delivery of these molecular tools can be selectively directed towards cancer cells and, after their internalization, the anticancer activity could be exerted either by the entire conjugate or by the free binder after loss of the targeting agent. Thus, due to the importance of poly(rA) binders, for example
  • these alkaloids show interesting binding abilities towards RNA structures and are currently the object of scientific investigation with the aim to develop drugs based on RNA targeting [22][23]. Among the various isoquinoline alkaloids able to bind poly(rA), particular relevance is attributed to
PDF
Album
Review
Published 17 Jun 2015

PLGA nanoparticles as a platform for vitamin D-based cancer therapy

  • Maria J. Ramalho,
  • Joana A. Loureiro,
  • Bárbara Gomes,
  • Manuela F. Frasco,
  • Manuel A. N. Coelho and
  • M. Carmo Pereira

Beilstein J. Nanotechnol. 2015, 6, 1306–1318, doi:10.3762/bjnano.6.135

Graphical Abstract
  • targeting gene expression via both genomic and nongenomic pathways [1]. Although known as an important regulator of calcium homeostasis and bone mineralization [3], several studies support that vitamin D also plays a major role in tumor pathogenesis, progression and therapy [2]. Calcitriol is also regarded
  • internalized by targeted cells, increasing intracellular drug delivery [20], allowing a sustained and controlled drug release over time [19]. Moreover, PLGA NPs could offer selective drug delivery to tumor tissue either by passive targeting with the enhanced permeability and retention effect (EPR) [18] or by
  • active targeting, using functionalized NPs [21]. Thus, the drug toxicity on healthy cells could be reduced, increasing NPs accumulation in the target tissues [19]. Although several studies on vitamin D3 encapsulation for food fortification have been conducted, very few works reported the use of
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
PDF
Album
Review
Published 23 Apr 2015

Protein corona – from molecular adsorption to physiological complexity

  • Lennart Treuel,
  • Dominic Docter,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2015, 6, 857–873, doi:10.3762/bjnano.6.88

Graphical Abstract
  • an HSA or transferrin corona both reduced the amount of endocytosed NPs with the exact causes for this behavior remaining uncertain. Also focusing on the transferrin corona, Salvati, Dawson and co-workers were able to demonstrate how transferrin-functionalized NPs can lose their targeting
  • -functionalized NPs shielding transferrin from binding to both its cognate receptors on cells and also to soluble transferrin receptors. While NPs were still taken up by the cells, the targeting specificity of transferrin was lost. These findings underline very well, the complexity of the situation where even
  • protein mediated cell-targeting suffers from corona formation under physiological conditions. Future approaches need to work around these effects and a detailed mechanistic knowledge is needed in order to do so. In a different approach, Treuel, Nienhaus and co-workers [4] studied the uptake of DHLA coated
PDF
Album
Review
Published 30 Mar 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • chemically modified with different targeting agents for a specific delivery of these nanocomposites. 2.1 Lanthanide complexes as both magnetic and fluorescent probe The electronic and magnetic properties of the lanthanide complexes are governed by 4f electrons. In some of the lanthanide complexes, the
  • cytometry, confocal microscopy and MRI studies suggested that the prepared nanocomposites can be used for targeting cancer cells that overexpress folic acid. Similar strategies were also used by Peng et al. [22] by using an iridium(III) complex as fluorescent agent. Hu et al. [23] reported the synthesis of
  • silica-encapsulated hydrophobic Mn3O4 NPs in which the silica surface was further modified by fluorescent rhodamine B and aptamer (AS411) as a targeting ligand. The in vitro confocal imaging and in vivo MRI studies showed that NPs specifically targeted the cancer cells. The histopathological and
PDF
Album
Review
Published 24 Feb 2015

Hollow plasmonic antennas for broadband SERS spectroscopy

  • Gabriele C. Messina,
  • Mario Malerba,
  • Pierfrancesco Zilio,
  • Ermanno Miele,
  • Michele Dipalo,
  • Lorenzo Ferrara and
  • Francesco De Angelis

Beilstein J. Nanotechnol. 2015, 6, 492–498, doi:10.3762/bjnano.6.50

Graphical Abstract
  • ][18] and magnetic field enhancement [19]. In these various disciplines, the rise of a trend targeting high performance spectroscopy techniques for biomolecules and cells can be recognized. Raman spectroscopy has already been implemented for whole live cell imaging [20] as well as its biological
PDF
Album
Full Research Paper
Published 18 Feb 2015

Influence of size, shape and core–shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx

  • Sergio D’Addato,
  • Daniele Pinotti,
  • Maria Chiara Spadaro,
  • Guido Paolicelli,
  • Vincenzo Grillo,
  • Sergio Valeri,
  • Luca Pasquali,
  • Luca Bergamini and
  • Stefano Corni

Beilstein J. Nanotechnol. 2015, 6, 404–413, doi:10.3762/bjnano.6.40

Graphical Abstract
  • accurate targeting of the experimental NP height is not needed, and the chosen value of 5 nm is a good compromise to be used for both tAg = 0.8 nm and tAg = 3.3 nm. Firstly, we considered the system composed of bare Ag NPs with a nominal thickness of tAg =0.8 nm (Figure 3e, continuous black curve). Good
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2015

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

  • Lisa Landgraf,
  • Ines Müller,
  • Peter Ernst,
  • Miriam Schäfer,
  • Christina Rosman,
  • Isabel Schick,
  • Oskar Köhler,
  • Hartmut Oehring,
  • Vladimir V. Breus,
  • Thomas Basché,
  • Carsten Sönnichsen,
  • Wolfgang Tremel and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2015, 6, 300–312, doi:10.3762/bjnano.6.28

Graphical Abstract
  • positive). Gold nanoparticles exhibit strong light scattering and absorption at their resonance wavelength due to their plasmonic properties [1][2]. Thus, these particles are used for optical imaging approaches [3][4]. Moreover, applications as contrast media for CT [5][6] and for selective cell targeting
  • excellent magnetization curves leading to T2 and T1 relaxivities during MRI [15][16][17][18][19][20]. Owing to their magnetic properties, they can particularly be used for hyperthermia applications and magnetic targeting through the body [21][22][23][24][25][26][27]. An assembly of multiple nanoparticles to
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2015

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • models following exposure with silica nanoparticles (SiO2-NP) [12][13][14]. Inorganic SiO2-NP hold great potential for several biomedical applications, including the selective targeting of cancer cells as well as drug or gene delivery systems due to their favorable biocompatibility and modification
  • deposits in HE-stained sections of glioblastomas (Figure 1a), a common brain tumor with high clinical relevance [45]. Such particles have similarly been visualized after targeting prostate cancer cells in humans [46]. Iron oxide nanoparticles have been introduced as diagnostic tool or for the treatment of
  • various cancers [45][46][47][48]. In several applications, they have proven to possess excellent tumor-targeting efficacy [49]. Likewise, titanium dioxide nanoparticles, essential components of sunscreens, were visualized as yellow-brown particles on superficial stratum corneum layers in HE-stained skin
PDF
Album
Review
Published 23 Jan 2015

Tailoring the ligand shell for the control of cellular uptake and optical properties of nanocrystals

  • Johannes Ostermann,
  • Christian Schmidtke,
  • Christopher Wolter,
  • Jan-Philip Merkl,
  • Hauke Kloust and
  • Horst Weller

Beilstein J. Nanotechnol. 2015, 6, 232–242, doi:10.3762/bjnano.6.22

Graphical Abstract
  • samples, bearing the amino functions showed no unspecific interaction with the cell membrane, which qualifies the nanocontainers in a first step as versatile tools for specific targeting, since no unspecific background has to be expected. Figure 10 shows exemplarily the confocal microscopy images for the
  • the neutral and positively charged nanocontainers were taken up by the cells, the negatively charged nanocontainers showed no interaction with the cells at all. From these experiments can be concluded, that the as prepared nanocontainers are suitable for specific targeting attempts, since they on the
  • one hand do not show any unspecific interaction with the cells under default conditions with serum containing medium. On the other hand, the nanocontainers are in a good size range and can in general be internalized by the cells. First experiments in tumor targeting with antibody coupled QDs and iron
PDF
Album
Supp Info
Review
Published 21 Jan 2015

Mechanical properties of MDCK II cells exposed to gold nanorods

  • Anna Pietuch,
  • Bastian Rouven Brückner,
  • David Schneider,
  • Marco Tarantola,
  • Christina Rosman,
  • Carsten Sönnichsen and
  • Andreas Janshoff

Beilstein J. Nanotechnol. 2015, 6, 223–231, doi:10.3762/bjnano.6.21

Graphical Abstract
  • that have been focussed on. Cytoxicity of nanomaterial has been assessed by common cytotoxicity assays targeting enzymatic activity such as LDH, MTT and ECIS. So far, however, less attention has been paid to the mechanical parameters of cells exposed to gold particles, which is an important reporter on
PDF
Album
Full Research Paper
Published 20 Jan 2015

The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice

  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Markus Heine,
  • Christian Waurisch,
  • Gordon M. Stachowski,
  • Stephen G. Hickey,
  • Alexander Eychmüller,
  • Jörg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 111–123, doi:10.3762/bjnano.6.11

Graphical Abstract
  • nanomedical applications because of their magnetic properties that allow specific targeting of early tumor or arteriosclerotic lesions, which can be closely monitored by magnetic resonance imaging (MRI). In contrast to Qdots, iron-based nanoparticles are known to be less toxic given that iron is an essential
  • kinetics, targeting efficacy and the acute as well as the chronic toxicity of both nanoparticle systems is needed. We are interested in techniques that allow the quantification of nanoparticles in vivo and have already developed a post-synthetic method to radiolabel the cores of superparamagnetic iron
PDF
Album
Full Research Paper
Published 09 Jan 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • the BNNTs via a targeting protein could generate smart and selective nanocarriers to be used in nanomedicine [67]. Physical modifications For these types of modifications, weak interactions such as π–π, hydrophobic, and van der Waals forces are utilized to coat the BNNTs with mostly a polymeric
  • composites in the presence and absence of a magnetic field [84]. The BNNT–NaGdF4:Eu composites simultaneously show fluorescent and magnetic properties. Thus, imaging and targeting of the composites can be more easily achieved. Human LNCaP prostate cancer cells were treated with the BNNT–NaGdF4:Eu composites
PDF
Album
Review
Published 08 Jan 2015

The fate of a designed protein corona on nanoparticles in vitro and in vivo

  • Denise Bargheer,
  • Julius Nielsen,
  • Gabriella Gébel,
  • Markus Heine,
  • Sunhild C. Salmen,
  • Roland Stauber,
  • Horst Weller,
  • Joerg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 36–46, doi:10.3762/bjnano.6.5

Graphical Abstract
  • needed to get more insight into the properties and influence of a preformed or a natural corona formation on the biodistribution and degradation of nanoparticles in vivo. We speculate that a tunable protein corona formation could be a successful strategy to increase targeting efficiency at least for nano
PDF
Album
Full Research Paper
Published 06 Jan 2015

Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions

  • Cornelia Loos,
  • Tatiana Syrovets,
  • Anna Musyanovych,
  • Volker Mailänder,
  • Katharina Landfester,
  • G. Ulrich Nienhaus and
  • Thomas Simmet

Beilstein J. Nanotechnol. 2014, 5, 2403–2412, doi:10.3762/bjnano.5.250

Graphical Abstract
  • for industrial usage, fuel additives for catalysis, additives in sunscreens for UV protection, or in the textile industry. One of the most promising fields of nanotechnology is drug delivery and drug targeting. Hydrophobic drugs are poorly soluble in biological media, other drugs lack gastric acid
  • resistance and cannot be applied orally. Such drugs could be encapsulated within nanoparticles protecting the drug, generating a new hydrophilic surface, improving pharmacokinetics and targeting the drug to distinct cells and tissues This would enable a reduction of the drug dosage thereby improving the
PDF
Album
Review
Published 15 Dec 2014

Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes

  • Marcela Elisabeta Barbinta-Patrascu,
  • Stefan Marian Iordache,
  • Ana Maria Iordache,
  • Nicoleta Badea and
  • Camelia Ungureanu

Beilstein J. Nanotechnol. 2014, 5, 2316–2325, doi:10.3762/bjnano.5.240

Graphical Abstract
  • largely used as drug delivery vehicles, showing potential in targeting specific cancer cells [18] with a necessary dosage lower than conventional drugs, without harming healthy cells and significantly reduced side effects. Another interesting property of carbon nanotubes is their antioxidant activity
PDF
Album
Full Research Paper
Published 02 Dec 2014

Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl–dextran–MMA graft copolymer and paclitaxel used as an artificial enzyme

  • Yasuhiko Onishi,
  • Yuki Eshita,
  • Rui-Cheng Ji,
  • Masayasu Onishi,
  • Takashi Kobayashi,
  • Masaaki Mizuno,
  • Jun Yoshida and
  • Naoji Kubota

Beilstein J. Nanotechnol. 2014, 5, 2293–2307, doi:10.3762/bjnano.5.238

Graphical Abstract
  • increasing concentrations of PTX, for example, Miyano has conducted extensive research into the resistance of these cells to PTX by using systems biology [35]. In addition, for a taxoid-based tumor-targeting drug, the resistance gene Taxol-resistant-associated protein 3 (TRAG-3) was identified in cancer
PDF
Album
Review
Published 01 Dec 2014

Nanoencapsulation of ultra-small superparamagnetic particles of iron oxide into human serum albumin nanoparticles

  • Matthias G. Wacker,
  • Mahmut Altinok,
  • Stephan Urfels and
  • Johann Bauer

Beilstein J. Nanotechnol. 2014, 5, 2259–2266, doi:10.3762/bjnano.5.235

Graphical Abstract
  • the past decades, nanocarriers have been utilized for a variety of different applications. In the area of pharmaceuticals these versatile drug delivery devices enabled the directed transport of drug substances to specific tissues after modification of the particle surface with drug targeting ligands
  • such as antibodies [1][2] and other proteins [3][4]. Aside the specific binding affinity, drug targeting is based on a passive accumulation mechanism that is controlled by particle size and surface characteristics of the colloids. Particles ranging in size between 50 and 300 nm accumulate in solid
  • charged core particles were embedded into the HSA matrix by ethanolic desolvation of the protein [9]. By adjusting the reaction conditions of the desolvation procedure, particles of optimal size distribution and surface properties for drug targeting applications have been achieved. The USPIO load
PDF
Album
Full Research Paper
Published 27 Nov 2014
Other Beilstein-Institut Open Science Activities