Search results

Search for "transport" in Full Text gives 761 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • intracellular target due to intracellular drug transport resistance mechanisms [10]. Additionally, the high recurrence rate in leukemia patients has been also attributed to the existence of a rare population of LSCs capable of evading drug therapies [11][12]. These CD34+CD38− LSCs, which preferentially reside
  • restoring the efficacy/response, especially through evading the drug transport resistance mechanisms. In contrast to traditional cytotoxic chemotherapy, targeted therapies, such as tyrosine kinase inhibitors (TKIs), are directed towards the molecular aberrations responsible for elevated kinase activity or
  • solutes and even particulate matter [18]. Portions of the sinusoidal endothelial cells could be noticeably reduced into small fenestrae with sizes in the range of 80–150 nm, which could facilitate the paracellular MBB transport. On the other hand, their clathrin-coated pits, lysosomes, clathrin-coated
PDF
Album
Review
Published 29 Apr 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • the wires. For instance, Au, generally used as catalyst for the growth of various semiconductor NWs, acts as a deep-level trap in germanium bulk and NWs, modifying the electronic transport properties [5]. Strain-induced elongation is a mechanism [34] that can lead to either epitaxial or endotaxial
PDF
Album
Full Research Paper
Published 28 Apr 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • graphene oxide, rGO) chemically or thermally. Through the partial removal of oxygen groups, the conductivity can be restored. Additionally, defects and vacancies are created [26]. Because of the ultra-high surface area per atom and the high electron transport along the graphene plane, rGO has a rapid and
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • by very strong thermal coupling and low quality factors [54][55]. 3 Plasmonic tetramer antennas based on single-crystalline gold flakes Used FIB-o-mat features: low-level beam path generation with optimization concerning heat transport, patterning time, and local dose. Thin flakes of single
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • ) without affecting CME and micropinocytosis [50], MBCD is not so specific. It can affect components of the transport machinery involved in multiple endocytic pathways including CME, depending on the concentration used [51]. F binds cholesterol within membranes while N perturbs cholesterol levels by
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • ) phthalocyanine (FePc) molecules on a Ge(001):H surface results in monolayer islands extending over hundreds of nanometers and comprising upright-oriented entities. Scanning tunneling spectroscopy reveals a transport gap of 2.70 eV in agreement with other reports regarding isolated FePc molecules. Detailed
  • STS data recorded on the islands indicated a transport gap of approximately 2.70 eV, which is in good agreement with previously reported values for isolated molecules. Since the Ge(001):H surface contains atomic-scale defects, a fraction of FePc molecules was found flat-lying and immobilized at these
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • Dresden-Rossendorf, Department of Reactive Transport, Institute of Resource Ecology, Permoserstraße 15, 04318 Leipzig, Germany 10.3762/bjnano.12.16 Abstract Highly ordered titanium oxide films grown on a Pt3Ti(111) alloy surface were utilized for the controlled immobilization and tip-induced electric
PDF
Album
Full Research Paper
Published 16 Feb 2021

Fusion of purple membranes triggered by immobilization on carbon nanomembranes

  • René Riedel,
  • Natalie Frese,
  • Fang Yang,
  • Martin Wortmann,
  • Raphael Dalpke,
  • Daniel Rhinow,
  • Norbert Hampp and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 93–101, doi:10.3762/bjnano.12.8

Graphical Abstract
  • ][19][20][21][22]. However, the fact that PM consists of micrometer-sized patches only represents a significant limitation of potential applications. Another limitation of the technical usability is the need for oriented alignment of the patches. Due to the vectorial transport of protons through PM
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • , also highlights the differences in dimensionality when it comes to defect-driven effects, especially in carrier transport. The volume under the influence of the defect centers is expected to be different in bulk and 2D structures, regardless of composition. Hence, analysis and discussion of both
  • defect-driven effects, especially in carrier transport. The volume under the influence of the defect centers is expected to be different in bulk and 2D structures, regardless of composition, Hence, analysis and discussion of both materials provide a fundamental understanding regarding the manner in which
  • 2D structures are impacted by defects compared to the bulk. Such an approach would therefore serve the scientific community with the materials design tools needed to fabricate the next generation of supercapacitor devices. It must be borne in mind that the way in which carrier transport is enhanced
PDF
Album
Review
Published 13 Jan 2021

Atomic layer deposited films of Al2O3 on fluorine-doped tin oxide electrodes: stability and barrier properties

  • Hana Krýsová,
  • Michael Neumann-Spallart,
  • Hana Tarábková,
  • Pavel Janda,
  • Ladislav Kavan and
  • Josef Krýsa

Beilstein J. Nanotechnol. 2021, 12, 24–34, doi:10.3762/bjnano.12.2

Graphical Abstract
  • , Technická 5, 166 28 Prague 6, Czech Republic 10.3762/bjnano.12.2 Abstract Al2O3 layers were deposited onto electrodes by atomic layer deposition. Solubility and electron-transport blocking were tested. Films deposited onto fluorine-doped tin oxide (FTO, F:SnO2/glass) substrates blocked electron transfer to
  • of electrified interfaces is particularly challenging, because electron or hole transport through the coating must be maintained. Previously, ALD and other coating techniques have been shown to protect a semiconducting hematite electrode against corrosion and photocorrosion by using titanium dioxide
  • thin layers of insulators may allow for electron transport across these layers if tunnelling occurs. It will be shown in the next sections that, for the thinnest deposited layers, this process is responsible for electrical currents passing across bulk solid/Al2O3/liquid interfaces. A special feature of
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • materials have the potential to be used for the transport of drugs to specific locations in the body as well as in medical diagnosis without the need for surgical interference [6]. Pal et al. synthesized Fe3O4 encapsulated in carbon nanostraws and reported an enhancement in the magnetic properties, which
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020

Kondo effects in small-bandgap carbon nanotube quantum dots

  • Patryk Florków,
  • Damian Krychowski and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2020, 11, 1873–1890, doi:10.3762/bjnano.11.169

Graphical Abstract
  • close to perpendicular. When the field approaches a transverse orientation a crossover from SU(2) or SU(3) symmetry into SU(4) is observed. Keywords: carbon nanotubes; Kondo effect; mesoscopic transport; quantum dots; valleytronics; Introduction Due to their remarkable electronic, transport
  • ][10][11]. CNTs are also interesting for fundamental science. Their study allows for the examination of many basic properties in ranges often not reachable in other systems. Many of the fundamental transport properties were observed in nanotubes, including Coulomb blockade [12][13], Fabry–Perot
  • nanoscopic system. The storage capacity of three-state or four-state qudits is obviously higher than the capacity of a qubit. In the present paper, we are interested in transport properties. The regime of charge transport depends on the ratio between tunnel-induced broadening of dot energy levels and
PDF
Album
Full Research Paper
Published 23 Dec 2020

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • recombination, leading to faster charge transport and photodegradation. Typically, the photocatalytic degradation efficacy of TiO2 depends on the surface area and metal-ion doping on the surface. Metal-ion doping of TiO2 influences its interfacial charge-transfer properties [51]. Differences in
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Aya Mahgoub,
  • Hang Lu,
  • Rachel M. Thorman,
  • Konstantin Preradovic,
  • Titel Jurca,
  • Lisa McElwee-White,
  • Howard Fairbrother and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2020, 11, 1789–1800, doi:10.3762/bjnano.11.161

Graphical Abstract
  • [17]. The typical issues to be addressed when testing novel precursors include: (i) precursor storage, (ii) gas injection system (GIS) loading, (iii) optimal precursor temperature for deposition, (iv) precursor volatility and transport from the SEM chamber, (v) ability of precursor to form solid
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • nanostructures are a new type of quantum electronics elements based on electron spin transport. Unlike conventional electronics, spintronics uses not only charge transfer, but also the electron spin in solids, solving the problem of transport and recording of information [1][2][3][4][5][6][7]. Based on the basic
PDF
Album
Full Research Paper
Published 24 Nov 2020

Absorption and photoconductivity spectra of amorphous multilayer structures

  • Oxana Iaseniuc and
  • Mihail Iovu

Beilstein J. Nanotechnol. 2020, 11, 1757–1763, doi:10.3762/bjnano.11.158

Graphical Abstract
  • mono- and bimolecular and that the transport is controlled through multiple trapping processes with exponential distribution of the localized states in the bandgap. Regarding the physics and applications of chalcogenide materials, multilayered amorphous thin-film structures are especially interesting
PDF
Album
Full Research Paper
Published 20 Nov 2020

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • of integrated electronic devices and circuits [24]. The diameter of the nanowires fabricated by MACE is not uniform, but it is distributed around an average value of 80 nm, which depends on the etching parameters. The transport properties (thermal conductivity and Seebeck coefficient) have been
PDF
Album
Full Research Paper
Published 11 Nov 2020

Cardiomyocyte uptake mechanism of a hydroxyapatite nanoparticle mediated gene delivery system

  • Hiroaki Komuro,
  • Masahiro Yamazoe,
  • Kosuke Nozaki,
  • Akiko Nagai and
  • Tetsuo Sasano

Beilstein J. Nanotechnol. 2020, 11, 1685–1692, doi:10.3762/bjnano.11.150

Graphical Abstract
  • can be taken up by cells via passive transport or active transport. Most nanoparticles are taken up by endocytosis (i.e., active transport) and rarely by direct penetration through the plasma membrane (i.e., passive transport). The endocytic pathway is an energy-dependent process; therefore, it can be
  • prevented by lowering the incubation temperature to 4 °C. First, to determine whether the incorporation of HAp nanoparticles into HL-1 cells is a passive or an active transport, we examined the transfection efficiency of HAp/pEGFP complexes at 4 and 37 °C (control). The results were expressed as percentages
PDF
Album
Full Research Paper
Published 05 Nov 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • production and clearance of ROS in cells are balanced by those enzymatic systems. Nevertheless, when these reactive species are in excess, a set of redox reactions can lead to cell death by the alteration of different essential structures (such as cell membrane, DNA, proteins, and electron transport chain
  • important to mention that some authors have identified them as good carriers of other antimicrobial molecules, improving their transport to the target [154], which offers protection against resistance by the target bacteria, and facilitates the permeation through the cell membrane. Metal ions can also allow
  • in microorganism-catalyzing metabolic reactions and are a fundamental part of cellular structures. Proteomic analysis has revealed deregulation in proteins involved in nitrogen metabolism, electron transfer, and substance transport in the presence of CuO NPs [164]. Silver ions released from Ag NPs
PDF
Album
Review
Published 25 Sep 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • transport and improve the efficiency of the thermoelectric generator [7]. Silicon nanowire arrays are also an emerging anode material for integrated lithium-ion batteries. They have a ten times higher theoretical capacity than graphite and can be used for cells with high energy density. However, these
PDF
Album
Full Research Paper
Published 23 Sep 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • reach a value of $9.5 billion USD by 2024, resulting in a compound annual growth rate of 13.2% during 2019–2024 [1]. Especially in the transport industry, fuel cells are expected to play a significant economic and ecological role when it comes to environmentally friendly energy production due to their
  • ) micrograph in Figure 2a. Pt-NPs (black dots) are homogeneously distributed across the entire porous carbon sheet (grey areas). The porosity of the support can be observed in the dark-field TEM micrograph (Figure 2b) and has been reported to be beneficial in electrocatalysis, as it reduces mass transport
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Superconductor–insulator transition in capacitively coupled superconducting nanowires

  • Alex Latyshev,
  • Andrew G. Semenov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2020, 11, 1402–1408, doi:10.3762/bjnano.11.124

Graphical Abstract
  • less than 2. As a result, two superconducting wires become insulating as soon as they are brought sufficiently close to each other. This remarkable physical phenomenon is illustrated by the phase diagram in Figure 2b. In order to complete this part of our analysis, we point out that transport
PDF
Album
Full Research Paper
Published 14 Sep 2020

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • membrane Na+-dependent glutamate transporters is responsible for the maintenance of the extracellular glutamate concentration. The transporters use Na+/K+ electrochemical gradients across the plasma membrane to accomplish glutamate transport. Glutamate is a potential growth factor in tumor development. The
  • found at the tumor margin in glioblastoma-bearing patients, which resulted in neuronal cell death and facilitated tumor growth [5][7][8]. In addition, abnormal glutamate transport and extracellular homeostasis contribute to neuronal dysfunction and are associated with the pathogenesis of major
  • glutamate biocoating shown in the previous subsection can change the effectiveness of ʟ-[14C]glutamate uptake by isolated nerve terminals (synaptosomes). The latter is an excellent system to analyze presynaptic transport processes [1]. γ-Fe2O3 nanoparticles at a concentration of 1 mg/mL decreased the
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • linked to the wetting layer, which functions as a communication layer between the droplets. This way it promotes material transport and accelerates the occurrence of certain events, such as Ostwald ripening. This argument is also supported by the fact that the droplet diameter values follows a LSW
  • on silicon must be stable. This wetting layer can be considered as a mediating communication layer, or as a material transport layer, which enables Ostwald ripening processes to occur. Indeed, the MBE-formed gold droplets on silicon show material fluctuation between the droplets. Here, the increased
  • Laplace pressure is not reduced by re-evaporation but by Ostwald ripening, which requires a medium for material transport and has a lower activation energy than evaporation. The monolayer of gold between the droplets represents this medium. In addition, the distribution of the droplet diameter values also
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • to EF (marked with an asterisk) could be ascribed to a charge transfer from the substrate [28]. The transport gap of PEN is 2.20 eV [88]. Similar transport gaps can be expected for PFP and F4PEN, which puts the Fermi level rather close to the LUMO. Moreover, in the vicinity of a metal surface, the
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020
Other Beilstein-Institut Open Science Activities