Search results

Search for "transport properties" in Full Text gives 160 result(s) in Beilstein Journal of Nanotechnology.

Towards quantitative accuracy in first-principles transport calculations: The GW method applied to alkane/gold junctions

  • Mikkel Strange and
  • Kristian S. Thygesen

Beilstein J. Nanotechnol. 2011, 2, 746–754, doi:10.3762/bjnano.2.82

Graphical Abstract
  • -standing problem in the field of charge transport. Here we demonstrate excellent agreement with experiments for the transport properties of the gold/alkanediamine benchmark system when electron–electron interactions are described by the many-body GW approximation. The conductance follows an exponential
  • pronounced due to the many possible contact geometries resulting from the strong Au–S interaction. Amine groups have been shown to produce more well-defined transport properties [1], which can be understood from the relatively weak Au–NH2 bond leading to larger structural selectivity [2]. Even for a given
  • importance for the transport properties of molecular junctions and seems to be the dominant effect at low bias voltage. At higher bias voltages, many-body calculations on small model systems suggest that electron correlations induce additional shifting and broadening of the molecular levels, which can also
PDF
Album
Full Research Paper
Published 09 Nov 2011

Lifetime analysis of individual-atom contacts and crossover to geometric-shell structures in unstrained silver nanowires

  • Christian Obermair,
  • Holger Kuhn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2011, 2, 740–745, doi:10.3762/bjnano.2.81

Graphical Abstract
  • conductance. Here, we study the transport properties and conductance-distribution statistics of electrochemically fabricated silver nanowires. We give a complete description of silver nanocontacts starting from individual atomic configurations (i.e., one or two atom contacts) proceeding to electronic-shell
PDF
Album
Full Research Paper
Published 03 Nov 2011

Nonconservative current-induced forces: A physical interpretation

  • Tchavdar N. Todorov,
  • Daniel Dundas,
  • Anthony T. Paxton and
  • Andrew P. Horsfield

Beilstein J. Nanotechnol. 2011, 2, 727–733, doi:10.3762/bjnano.2.79

Graphical Abstract
  • –nuclear interactions lie at the heart of the transport properties of nanoscale conductors. Even in the limit of elastic (phonon-free) conduction, the nature and positions of nuclei in a nanojunction determine the external potential, experienced by current-carrying electrons, and, together with electron
PDF
Album
Full Research Paper
Published 27 Oct 2011

Optical properties of fully conjugated cyclo[n]thiophenes – An experimental and theoretical approach

  • Elena Mena-Osteritz,
  • Fan Zhang,
  • Günther Götz,
  • Peter Reineker and
  • Peter Bäuerle

Beilstein J. Nanotechnol. 2011, 2, 720–726, doi:10.3762/bjnano.2.78

Graphical Abstract
  • In the last few decades organic conjugated polymers and oligomers, in particular poly- and oligothiophenes, have attracted a broad interest due to their excellent electronic and transport properties in the solid state, which allow their application in a variety of organic-electronic devices, such as
PDF
Album
Full Research Paper
Published 25 Oct 2011

Nanostructured, mesoporous Au/TiO2 model catalysts – structure, stability and catalytic properties

  • Matthias Roos,
  • Dominique Böcking,
  • Kwabena Offeh Gyimah,
  • Gabriela Kucerova,
  • Joachim Bansmann,
  • Johannes Biskupek,
  • Ute Kaiser,
  • Nicola Hüsing and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2011, 2, 593–606, doi:10.3762/bjnano.2.63

Graphical Abstract
  • , Germany Transmission Electron Microscopy Group, Ulm University, D-89069 Ulm, Germany Materials Chemistry, Paris-Lodron University Salzburg, Austria 10.3762/bjnano.2.63 Abstract Aiming at model systems with close-to-realistic transport properties, we have prepared and studied planar Au/TiO2 thin-film
  • respect to their (internal) transport properties, as given, e.g., by the absence/presence of pore diffusion. Therefore, we recently started to develop a new type of model system, consisting of a nanoscale catalyst layer of a hundred to a few hundred nanometers thickness on a planar support. While both the
  • preparation procedure and the internal surface chemistry and structure closely resemble those of realistic, dispersed catalysts, the transport properties in the nanostructured catalyst are much better controlled. Therefore, these model catalysts should be particularly suited for studies on the influence of
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2011

Self-organizing bioinspired oligothiophene–oligopeptide hybrids

  • Alexey K. Shaytan,
  • Eva-Kathrin Schillinger,
  • Elena Mena-Osteritz,
  • Sylvia Schmid,
  • Pavel G. Khalatur,
  • Peter Bäuerle and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2011, 2, 525–544, doi:10.3762/bjnano.2.57

Graphical Abstract
  • fundamental understanding of their structural and charge transport properties. Various morphological organization examples of fibrillar aggregates that can be formed by polymer bioconjugates: (a) Wide planar tapes [18]; (b) helical superstructure [19]; (c) tapes with a dumb-bell shaped cross section [20]; (d
PDF
Album
Review
Published 05 Sep 2011

Charge transfer through single molecule contacts: How reliable are rate descriptions?

  • Denis Kast,
  • L. Kecke and
  • J. Ankerhold

Beilstein J. Nanotechnol. 2011, 2, 416–426, doi:10.3762/bjnano.2.47

Graphical Abstract
  • or even superconducting metallic leads [2][3]. The objective is to exploit nonlinear transport properties of molecular junctions as the elementary units for a future molecular electronics. While the initial experiments were operated at room temperature, low temperatures down to the millikelvin range
PDF
Album
Full Research Paper
Published 03 Aug 2011

Organic–inorganic nanosystems

  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 363–364, doi:10.3762/bjnano.2.41

Graphical Abstract
  • these interfaces on the transport properties of the devices, the electronic properties of various arrangements of organic molecules on top of metals must be studied. For the analysis of single molecules, the most promising technique is Scanning Tunneling Microscopy (STM) and its spectroscopic variant
PDF
Video
Editorial
Published 12 Jul 2011

Simple theoretical analysis of the photoemission from quantum confined effective mass superlattices of optoelectronic materials

  • Debashis De,
  • Sitangshu Bhattacharya,
  • S. M. Adhikari,
  • A. Kumar,
  • P. K. Bose and
  • K. P. Ghatak

Beilstein J. Nanotechnol. 2011, 2, 339–362, doi:10.3762/bjnano.2.40

Graphical Abstract
  • materials was investigated on the basis of newly formulated electron energy spectra, in the presence of external light waves, which controls the transport properties of ultra-small electronic devices under intense radiation. The effect of magnetic quantization on the photoemission from the aforementioned
PDF
Album
Full Research Paper
Published 06 Jul 2011

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • we further analyze different properties of granular giant magnetoresistance sensors based on their spin-dependent transport properties. Review 1. Particle preparation In principle, two different strategies for the synthesis of nanoparticles may be pursued. The top-down method starts from the bulk
  • results in a force onto the particles which entails the assembly close to air–liquid boundary. This allows for a controlled positioning of the particle monolayer within a specified target region (on top of magnetoresistive sensors, between contacts for measurements of electrical transport properties etc
  • magnetism is dominated by external fields prior to interparticle coupling. b) In the high concentration regime, dipolar coupling plays the major role for the dynamic processes and the equilibrium configuration of magnetic particles assembled in monolayers. 3.2 Transport properties By embedding magnetic
PDF
Album
Review
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities