Search results

Search for "ultrahigh vacuum" in Full Text gives 163 result(s) in Beilstein Journal of Nanotechnology.

Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001)

  • Christian Held,
  • Thomas Seyller and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2012, 3, 179–185, doi:10.3762/bjnano.3.19

Graphical Abstract
  • representation of multichannel NC-AFM data sets in a quantitative fashion. Presentation and analysis are exemplified for topography and contact-potential data for graphene grown epitaxially on 6H-SiC(0001), as recorded by Kelvin probe force microscopy in ultrahigh vacuum. Sample preparations by thermal
  • decomposition in ultrahigh vacuum and in an argon atmosphere are compared and the respective growth mechanisms discussed. Keywords: FM-AFM; graphene; 6H-SiC(0001); KPFM; SPM; Introduction Graphene grows epitaxially on the Si face of 6H-SiC(0001) by thermal decomposition in vacuum or an inert atmosphere
  • temperatures these processes lead to the growth of graphene. A high homogeneity of the graphene coverage was obtained in ultrahigh vacuum by cyclic heating to 1200 °C [2] and in an argon atmosphere by prolonged heating to 1650 °C [1]. On the Si face of the 6H-SiC(0001) wafers the thickness of the graphene
PDF
Album
Full Research Paper
Published 29 Feb 2012

qPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution

  • Maximilian Schneiderbauer,
  • Daniel Wastl and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2012, 3, 174–178, doi:10.3762/bjnano.3.18

Graphical Abstract
  • acquisition times. To benchmark our setup, we reduced the magnetic moment of the tip by attaching a commercial MFM cantilever tip (NanoWorld Pointprobe MFMR, coated with approx. 40 nm cobalt alloy) onto a qPlus sensor. This has been done before in tuning-fork setups in room-temperature ultrahigh-vacuum
PDF
Album
Letter
Published 29 Feb 2012

Noncontact atomic force microscopy

  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2012, 3, 172–173, doi:10.3762/bjnano.3.17

Graphical Abstract
  • microscopy (AFM), on the other hand, was quickly developed into a versatile tool with applications ranging from materials characterization in ultrahigh vacuum and nanofabrication under ambient conditions, to biological studies in liquids, but its resolution was limited to the nanometer scale. The reason for
  • conference from this series was held in Lindau, Germany, from September 18–22, 2011. Once again, substantial progress was presented; NC-AFM is now able to quantitatively map three-dimensional force fields of surfaces with atomic resolution in ultrahigh vacuum as well as in liquids, and methodological
PDF
Editorial
Published 29 Feb 2012

Generation and agglomeration behaviour of size-selected sub-nm iron clusters as catalysts for the growth of carbon nanotubes

  • Ravi Joshi,
  • Benjamin Waldschmidt,
  • Jörg Engstler,
  • Rolf Schäfer and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2011, 2, 734–739, doi:10.3762/bjnano.2.80

Graphical Abstract
  • , mass-selected and surface-implanted at room temperature under ultrahigh vacuum [10] at a surface coverage in the range of a few thousandths up to a few hundredths of a monolayer on standard substrate grids for transmission electron microscopy (TEM). The kinetic energy of the as deposited iron clusters
  • was rapidly cooled down by collisions with He atoms, thereby forming clusters. The cluster–helium mixture was then injected through a nozzle (5) into an ultrahigh vacuum apparatus. Passing a skimmer (6), positive ions in the molecular beam were accelerated by a Wiley–McLaren time-of-flight (TOF) unit
PDF
Album
Full Research Paper
Published 01 Nov 2011

Femtosecond time-resolved photodissociation dynamics of methyl halide molecules on ultrathin gold films

  • Mihai E. Vaida,
  • Robert Tchitnga and
  • Thorsten M. Bernhardt

Beilstein J. Nanotechnol. 2011, 2, 618–627, doi:10.3762/bjnano.2.65

Graphical Abstract
  • found to be unlikely to be responsible for the observed dynamics of both molecules. Methyl chloride did not yield any detectable photofragments. Experimental The experiments were performed in an ultrahigh vacuum (UHV) chamber equipped with standard tools for surface preparation and characterization [15
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2011

Nanostructured, mesoporous Au/TiO2 model catalysts – structure, stability and catalytic properties

  • Matthias Roos,
  • Dominique Böcking,
  • Kwabena Offeh Gyimah,
  • Gabriela Kucerova,
  • Joachim Bansmann,
  • Johannes Biskupek,
  • Ute Kaiser,
  • Nicola Hüsing and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2011, 2, 593–606, doi:10.3762/bjnano.2.63

Graphical Abstract
  • single crystal surfaces under ultrahigh vacuum (UHV) conditions [1]. It was soon realized, however, that because of the tremendous differences in the materials and reaction conditions between the idealized and realistic cases, the conclusions and results obtained from these model studies could not be
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2011

Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films

  • Luyang Han,
  • Ulf Wiedwald,
  • Johannes Biskupek,
  • Kai Fauth,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 473–485, doi:10.3762/bjnano.2.51

Graphical Abstract
  • all steps of the specimen investigation, ultrahigh vacuum conditions were maintained, except for the annealing steps carried out in a H2 atmosphere at 10−4 mbar. All XMCD measurements were taken at low temperature (T ≈ 12 K) and at normal incidence of the circularly polarized X-rays (p ≈ 0.93), by
PDF
Album
Video
Full Research Paper
Published 23 Aug 2011

Towards a scalable and accurate quantum approach for describing vibrations of molecule–metal interfaces

  • David M. Benoit,
  • Bruno Madebene,
  • Inga Ulusoy,
  • Luis Mancera,
  • Yohann Scribano and
  • Sergey Chulkov

Beilstein J. Nanotechnol. 2011, 2, 427–447, doi:10.3762/bjnano.2.48

Graphical Abstract
  • the description of low temperature vibrational spectra, such as those obtained in supersonic jet expansions or in ultrahigh-vacuum environments. In most implementations of VSCF-based approaches, the required resolution of the vibrational Schrödinger equation means that it remains a time-consuming
PDF
Album
Full Research Paper
Published 10 Aug 2011

Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001)

  • Michael Roos,
  • Benedikt Uhl,
  • Daniela Künzel,
  • Harry E. Hoster,
  • Axel Groß and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2011, 2, 365–373, doi:10.3762/bjnano.2.42

Graphical Abstract
  • of the adsorption potential on the graphene/Ru(0001) substrate, is of similar magnitude for both molecules. Experimental Experiments The experiments were performed in a standard ultrahigh vacuum (UHV) system (base pressure 2 × 10−10 mbar), equipped with a commercial variable temperature scanning
PDF
Album
Full Research Paper
Published 12 Jul 2011

Switching adhesion forces by crossing the metal–insulator transition in Magnéli-type vanadium oxide crystals

  • Bert Stegemann,
  • Matthias Klemm,
  • Siegfried Horn and
  • Mathias Woydt

Beilstein J. Nanotechnol. 2011, 2, 59–65, doi:10.3762/bjnano.2.8

Graphical Abstract
  • between the cleavage planes of various vanadium oxide Magnéli phases (n = 3 … 7) and spherical titanium atomic force microscope (AFM) tips by systematic force–distance measurements with a variable-temperature AFM under ultrahigh vacuum conditions (UHV). The results show, for all investigated samples, that
  • , is thus better suited for quantitative and comparative adhesion force measurements [22][23][24]. Previously, the applicability and the sensitivity of the AFM in the spherical probe configuration (i.e., with a microsphere as a probe tip) operated under ultrahigh vacuum conditions for the
PDF
Album
Full Research Paper
Published 27 Jan 2011

Structure, morphology, and magnetic properties of Fe nanoparticles deposited onto single-crystalline surfaces

  • Armin Kleibert,
  • Wolfgang Rosellen,
  • Mathias Getzlaff and
  • Joachim Bansmann

Beilstein J. Nanotechnol. 2011, 2, 47–56, doi:10.3762/bjnano.2.6

Graphical Abstract
  • Experiments on exposed mass-filtered Fe nanoparticles on (ferromagnetic) supports require in situ cluster deposition as well as surface sensitive analysis techniques performed under ultrahigh vacuum conditions. To motivate the need of our combined approach, we first introduce the arc cluster ion source (ACIS
  • other pulsed light sources [26]. For the present experiments the PACIS design has been modified to allow a high and continuous flux of mass-filtered nanoparticles (size regime: 4 nm to 25 nm) with a moderate size distribution in surface science experiments [27][28]. The resulting ACIS is ultrahigh
  • vacuum compatible, small in size to allow easy transportation and can be flexibly attached to different experimental stations, e.g., laboratory-based STM experiments, different end stations at synchrotron light sources such as BESSY (Berlin, Germany) and more recently, the Elmitech PEEM at the SIM
PDF
Album
Full Research Paper
Published 21 Jan 2011

Oriented growth of porphyrin-based molecular wires on ionic crystals analysed by nc-AFM

  • Thilo Glatzel,
  • Lars Zimmerli,
  • Shigeki Kawai,
  • Ernst Meyer,
  • Leslie-Anne Fendt and
  • Francois Diederich

Beilstein J. Nanotechnol. 2011, 2, 34–39, doi:10.3762/bjnano.2.4

Graphical Abstract
  • their intermolecular π–π stacking. Experimental Experiments were performed under ultrahigh vacuum (UHV) conditions with a base pressure below 10−10 mbar using a home built non-contact atomic force microscope operated at rt [39]. In the nc-AFM mode, the tip-sample distance is usually controlled by
PDF
Album
Video
Full Research Paper
Published 13 Jan 2011

Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

  • Thomas König,
  • Georg H. Simon,
  • Lars Heinke,
  • Leonid Lichtenstein and
  • Markus Heyde

Beilstein J. Nanotechnol. 2011, 2, 1–14, doi:10.3762/bjnano.2.1

Graphical Abstract
  • atomic force microscopy (FM-AFM) or dynamic force microscopy (DFM). For the stability of tip and sample as well as for the reduction of piezo creep, piezo hysteresis, thermal drift and noise level, the setup was operated in ultrahigh vacuum (UHV) at low temperature (5 K). The resulting high stability
PDF
Album
Review
Published 03 Jan 2011
Other Beilstein-Institut Open Science Activities