Search results

Search for "Raman" in Full Text gives 470 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Raman study of flash-lamp annealed aqueous Cu2ZnSnS4 nanocrystals

  • Yevhenii Havryliuk,
  • Oleksandr Selyshchev,
  • Mykhailo Valakh,
  • Alexandra Raevskaya,
  • Oleksandr Stroyuk,
  • Constance Schmidt,
  • Volodymyr Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2019, 10, 222–227, doi:10.3762/bjnano.10.20

Graphical Abstract
  • nanocrystals (NCs) is investigated by Raman spectroscopy. Unlike similar previous studies of NCs synthesized at high temperatures in organic solvents, NCs in this work, which have diameters as small as 2–6 nm, were synthesized under environmentally friendly conditions in aqueous solution using small molecules
  • sulfide Cu2ZnSnS4 (CZTS); CuS; Cu-Sn-S; kesterite; phonon; pulsed light crystallization; Raman spectroscopy; secondary phase; SnS; Introduction Affordable and non-toxic solar energy materials having a high absorption coefficient and a bandgap in the solar illumination range are an ever-growing research
  • , up to 60 J/cm2, on NC films deposited on a glass substrate by drop-casting. The influence of film thickness and crystallinity of the initial NCs (before FLA) was also studied. Raman scattering was chosen as a main characterization method in this work, because it has already proved to be very
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • were investigated using Raman spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and UV–vis–NIR spectroscopy. We demonstrated that Sb2S3 optical coatings with controllable structure, morphology and optical properties can be deposited by ultrasonic spray
  • description of the vapor pressure calculations (Comment S1) are provided in the Supporting Information File 1. Consequently, only as-deposited samples and samples thermally treated in vacuum at 170 °C and 200 °C are eligible for discussion. Structure of as-deposited and thermally treated Sb2S3 layers Raman
  • spectroscopy provides quantitative and qualitative information on the vibrational modes in solids. The wide Raman band centered at 290 cm−1 [12][16] associated with metastibnite, i.e., amorphous Sb2S3, is characteristic of as-deposited orange colored (photograph in Supporting Information File 1, Figure S1
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • Ru/C layer along the inner pore walls. The amorphous material consists of metallic Ru incorporated in a carbonaceous C matrix as shown by X-ray diffraction combined with Raman and X-ray photoelectron spectroscopies. These porous electrodes reveal enhanced stability during water oxidation as compared
  • samples The chemical and phase identity of the Ru/C material obtained by laser-induced deposition is delivered by a combination of X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. Firstly, the Ru/C layer is amorphous, since only crystalline Al peaks of the substrate are visible
  • in the X-ray diffraction pattern (Figure S3, Supporting Information File 1). The Raman spectra recorded on the Ru/C coated nanostructured sample (Figure 7a) can be divided into two distinct regions below 800 cm−1 and beyond it. In the low- frequency region, the broad peaks centered at 465 and 690 cm
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • chemical composition of the iron oxide decorated carbon nanotube samples were investigated employing transmission electron microscopy (TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The differently decorated CNT samples were used to make gas sensors for detecting nitrogen dioxide. A
  • copper grids. The Raman spectra for the different samples was characterized using a Renishaw inVia spectrometer as the powder samples were mounted on clean glass slides. The samples were excited with a green (514 nm) laser using 50% laser power and the exposure time was 10 s. X-ray diffraction (XRD
  • nanoclusters. This is shown in Figure 9a. In addition, the nanocluster size distribution can be found in Supporting Information File 5, Figure S5. It can be concluded that the nanocluster size increases with increasing calcination time. Also, the Raman spectra for pristine CNTs along with decorated samples of
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots

  • Siyi Hu,
  • Yu Ren,
  • Yue Wang,
  • Jinhua Li,
  • Junle Qu,
  • Liwei Liu,
  • Hanbin Ma and
  • Yuguo Tang

Beilstein J. Nanotechnol. 2019, 10, 22–31, doi:10.3762/bjnano.10.3

Graphical Abstract
  • stability and biocompatibility of GNRs has been reported by several researchers, and they are being investigated as a probe for photothermal therapy in nanomedicine. The presence of longitudinal surface plasmon resonance (LSPR) provides GNRs with richer optical properties, which lead to local field, Raman
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2019

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • were performed. In general, both analyses showed that the Zn percentage increases with increasing ZnEt2 flow, accompanied at the same time by a decrease in the amount of F in the nanopowders when the same SF6 flow was employed. The Raman spectra of the nanoparticles show the influence of both Zn and F
  • towards the center in agreement with the most intense crystalline plane planes (112) and (−312) of the SnF2 phase. Also, in both SAED images there are no diffraction rings or dots placed in ZnO(101): 2.48 Å and Zn(101): 2.09 Å positions. Raman spectroscopy Raman spectroscopy, commonly employed to provide
  • qualitative information via phononic behavior regarding the crystalline nature of materials, is a useful tool for investigating disorder in oxide materials. Figure 4a presents a typical room temperature Raman spectra of as-synthesized F or Zn/F-doped SnO2 nanopowders. The Raman spectra analyzed in this work
PDF
Album
Full Research Paper
Published 02 Jan 2019

Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

  • Majid Fazeli Jadidi,
  • Umut Kamber,
  • Oğuzhan Gürlü and
  • H. Özgür Özer

Beilstein J. Nanotechnol. 2018, 9, 2953–2959, doi:10.3762/bjnano.9.274

Graphical Abstract
  • temperature, the Ar flow was stopped and the H2 flow was reduced while CH4 was let in to the quartz tube as the carbon source. As-grown samples, as well as graphene crsytals transferred on to dielectric substrates were investigated by optical microscopy and scanning electron microscopy (SEM). Raman spectra
PDF
Album
Full Research Paper
Published 28 Nov 2018

Ternary nanocomposites of reduced graphene oxide, polyaniline and hexaniobate: hierarchical architecture and high polaron formation

  • Claudio H. B. Silva,
  • Maria Iliut,
  • Christopher Muryn,
  • Christian Berger,
  • Zachary Coldrick,
  • Vera R. L. Constantino,
  • Marcia L. A. Temperini and
  • Aravind Vijayaraghavan

Beilstein J. Nanotechnol. 2018, 9, 2936–2946, doi:10.3762/bjnano.9.272

Graphical Abstract
  • room temperature. Detailed characterisation by X-ray photoelectron and Raman spectroscopies indicates an intermediate reduction degree for the rGO component and high doping degree of the PANI chains compared to the neat polymer. The latter feature can be attributed to cooperative effects of PANI chains
  • morphological aspects. Therefore, the new nanocomposite presents promising properties for development of new materials in the film form on substrates for sensing or corrosion protection for example. Keywords: graphene oxide; hexaniobate; polyaniline; Raman spectroscopy; secondary doping; Introduction
  • spectroscopic and cyclic voltammetry/spectroelectrochemical techniques [6]. The inorganic phase induces a secondary doping of the conductor polymer. In another work [7], Raman and EPR spectra also revealed that a PANI/hexNb nanocomposite prepared by the self-assembly approach exhibits a higher conversion of
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2018

In situ characterization of nanoscale contaminations adsorbed in air using atomic force microscopy

  • Jesús S. Lacasa,
  • Lisa Almonte and
  • Jaime Colchero

Beilstein J. Nanotechnol. 2018, 9, 2925–2935, doi:10.3762/bjnano.9.271

Graphical Abstract
  • [31] and the RCA process [32], both of which are very successful in the removal of organic and metal contamination. Several methods for tip characterization have been proposed, such as X-ray analysis, Raman spectroscopy, contact angle measurements, and scanning and transmission electron microscopy [33
PDF
Album
Full Research Paper
Published 23 Nov 2018

Nanostructure-induced performance degradation of WO3·nH2O for energy conversion and storage devices

  • Zhenyin Hai,
  • Mohammad Karbalaei Akbari,
  • Zihan Wei,
  • Danfeng Cui,
  • Chenyang Xue,
  • Hongyan Xu,
  • Philippe M. Heynderickx,
  • Francis Verpoort and
  • Serge Zhuiykov

Beilstein J. Nanotechnol. 2018, 9, 2845–2854, doi:10.3762/bjnano.9.265

Graphical Abstract
  • in a faster performance degradation, due to its weak interlayer van der Waals forces, even though it outranks the 3D network structure in terms of improved electronic properties. The structural transformation of 2D layered WO3·nH2O into 3D nanostructures is observed via ex situ Raman measurements
  • transformation of 2D layered WO3·nH2O to 3D structures was observed via ex situ Raman measurements under electrochemical cycling experiments. The morphology change confirmed the degradation mechanism proposed in this work. Consequently, this work provides an in-depth understanding of the weakness of 2D layered
  • bonding was collected by X-ray photoelectron spectrometry (XPS, K-Alpha, Thermo Scientific) and Raman spectroscopy (EZRaman-N-785, TSI. Inc.), respectively. Electrochemical characterization of the samples was performed using an Autolab PGSTAT204 (Metrohm Autolab B.V.) with a three-electrode configuration
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2018

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • confirmed that there existed C–O–W chemical bonds between WO3 and graphene by Raman and XPS measurements. The proposed sensing mechanism is shown in Figure 5. When exposed to oxygen or NO2 molecules, the gas molecules adsorbed on WO3 nanospheres cause the energy band to bend upward via obtaining electrons
PDF
Album
Review
Published 09 Nov 2018

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • Sherif Okeil Jorg J. Schneider Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 12, 64287 Darmstadt, Germany 10.3762/bjnano.9.263 Abstract The design of efficient substrates for surface-enhanced Raman spectroscopy (SERS) for
  • surfaces act as efficient SERS substrates showing greater enhancement factors compared to as prepared, sputtered, but untreated silver films when using rhodamine B as Raman probe molecule. The obtained roughened silver films were fully characterized by scanning electron microscopy (SEM), atomic force
  • treatment; silver; sputtering; surface-enhanced Raman spectroscopy (SERS); surface roughening; Introduction The great enhancement of Raman signals obtained from molecules when they are in close vicinity to a rough noble-metal surface (e.g., gold, silver and copper) has attracted a great deal of interest in
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Variation of the photoluminescence spectrum of InAs/GaAs heterostructures grown by ion-beam deposition

  • Alexander S. Pashchenko,
  • Leonid S. Lunin,
  • Eleonora M. Danilina and
  • Sergei N. Chebotarev

Beilstein J. Nanotechnol. 2018, 9, 2794–2801, doi:10.3762/bjnano.9.261

Graphical Abstract
  • the GaAsBi/GaAs, InAs/GaAs, and InAs/GaAsBi heterointerfaces were investigated by methods of Raman spectroscopy and X-ray diffraction (XRD). X-ray diffraction reflection curves were investigated on a high-resolution TRS-1 X-ray diffractometer with a third-crystal geometry using the Cu Kα emission line
  • (λ = 0.154 nm). A Renishaw InVia Raman spectrometer was used for Raman investigations. Results and Discussion Photoluminescence properties of InAs/GaAs heterointerfaces The photoluminescence properties of vertically stacked QD arrays grown by using molecular beam epitaxy (MBE) are well studied in [24
  • the sputtering targets. In our opinion, this difference is due to the desorption of Bi from the surface, despite the low deposition temperature of 360 °C. The influence of bismuth on the structural properties of InAs/GaAsBi and InAs/GaAs heterointerfaces was investigated by using Raman spectroscopy
PDF
Album
Full Research Paper
Published 02 Nov 2018

Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules

  • Naoual Allali,
  • Veronika Urbanova,
  • Mathieu Etienne,
  • Xavier Devaux,
  • Martine Mallet,
  • Brigitte Vigolo,
  • Jean-Joseph Adjizian,
  • Chris P. Ewels,
  • Sven Oberg,
  • Alexander V. Soldatov,
  • Edward McRae,
  • Yves Fort,
  • Manuel Dossot and
  • Victor Mamane

Beilstein J. Nanotechnol. 2018, 9, 2750–2762, doi:10.3762/bjnano.9.257

Graphical Abstract
  • . Once opened to air, the samples were analyzed by Raman spectroscopy. Functionalization by ferrocene derivatives Ferrocene derivatives were grafted onto CNT sidewalls by reacting the alcohol group of the ferrocene linkers to the COCl groups present after step 2 on the CNT sidewalls. We investigated
  • attached to CNT sidewalls. XPS and TGA-MS experiments thus show that oxidized defects can be detected for samples having undergone the oxidation and functionalization steps. Raman spectroscopy is a method of choice to observe the creation of sp3 defects in carbon nanostructures, due to the presence in the
  • Raman spectrum of a dispersive defect-induced band, called the D band, around 1350 cm−1. Figure 8 reports the Raman spectra of raw, oxidized and functionalized samples using a laser wavelength of 514 nm. In Figure S3 (Supporting Information File 1), some Raman spectra obtained for the samples using a
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2018

Contactless photomagnetoelectric investigations of 2D semiconductors

  • Marian Nowak,
  • Marcin Jesionek,
  • Barbara Solecka,
  • Piotr Szperlich,
  • Piotr Duka and
  • Anna Starczewska

Beilstein J. Nanotechnol. 2018, 9, 2741–2749, doi:10.3762/bjnano.9.256

Graphical Abstract
  • occasional holes and cracks. The presence of single-layer graphene was confirmed by Raman spectroscopy using an NTEGRA Spectra (NT-NDT) device with a wavelength of 532 nm. The carrier mobility μe = 1256(25) cm2V−1s−1 and sheet carrier concentration ne = 4.65(6)·1016 m−2 in the graphene were determined using
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2018

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • orientation of the nanorods along the [001] crystallographic axis. No notable variation in the XRD patterns of the NRs was observed with respect to growth time. The Raman spectra of the ZnO NRs are shown in Figure 2b, where a strong Raman scattering at 435 cm−1 representing the E2high phonon mode of ZnO is
  • seen along with a broad peak centered around 574 cm−1 representing the A1(LO) mode [29]. All samples showed almost identical Raman spectra irrespective of their growth times or sizes. A schematic of the shape of ZnO NRs is shown in Figure 2c where the growth direction is indicated. Linear optical
  • diffraction angle from 20° to 80°. The vibrational properties of the NRs were studied by Raman spectroscopy using a XploRA confocal Raman microscope from Horiba. The Raman spectra were recorded using a 0.532 µm CW laser excitation with a 10× objective and 1800 lines/mm grating (spectral resolution better than
PDF
Album
Full Research Paper
Published 23 Oct 2018

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy IFAC-CNR, Institute of Applied Physics “Nello Carrara”, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy 10.3762/bjnano.9.254 Abstract Tip-enhanced Raman
  • tested on dyes, pigments and biomolecules and enhancement factors higher than 105 are observed. TERS mapping with a spatial resolution of 5 nm is demonstrated. Keywords: amyloid; enhanced spectroscopy; gold tips; plasmonics; TERS; Introduction Tip-enhanced Raman spectroscopy (TERS) combines the
  • chemical and structural information of Raman spectroscopy with the large signal gain provided by plasmonic resonances in metal tips and the high spatial resolution mapping offered by scanning probe microscopy [1][2][3][4][5]. In TERS, sharp metallic (or metallized) tips act as optical nanoantennas [6][7
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Disorder in H+-irradiated HOPG: effect of impinging energy and dose on Raman D-band splitting and surface topography

  • Lisandro Venosta,
  • Noelia Bajales,
  • Sergio Suárez and
  • Paula G. Bercoff

Beilstein J. Nanotechnol. 2018, 9, 2708–2717, doi:10.3762/bjnano.9.253

Graphical Abstract
  • . 8400 San Carlos de Bariloche, Argentina 10.3762/bjnano.9.253 Abstract Disorder was induced in pristine highly oriented pyrolytic graphite (HOPG) by irradiation with H+ ions with energies of 0.4 MeV and 1 MeV, and doses of 1014 ions/cm2 and 1016 ions/cm2. Raman spectroscopy was used as the main
  • component than to the D1 component. SQUID measurements of the irradiated samples showed an enhancement in the normalized remanence, as well as an increment in coercivity compared to pristine HOPG, consistent with H+-induced point-like defects as well as C–H bonds. AFM scanning after Raman and SQUID
  • engineering in carbon-based materials. Keywords: disorder; highly oriented pyrolytic graphite (HOPG); ion–solid interactions; Raman spectroscopy; topography; Introduction The development of novel methods to control the properties of carbon-based materials by introducing disorder is currently a subject of
PDF
Album
Full Research Paper
Published 19 Oct 2018

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • and optical properties and this is further discussed in the following sections. Raman spectroscopy Raman spectra obtained after annealing at 450 °C in air are shown in Figure 4. Anatase is the stable phase with bands at 193.1 (Eg), 393.7 (B1g), 514.2 (A1g), and 634.7 cm−1 (Eg), as well as a sharp and
  • beneficial effect for the degradation of MB, which could be also facilitated by an anchoring mechanism to a more hydrophilic TiO2 surface [90]. Further information on the degradation of MB was obtained with Raman spectroscopy. Figure 9e shows the spectra recorded for the solutions at the end of the treatment
  • diffractograms performed on a Bruker AXS (model D8 Advance) diffractometer, using Cu Kα radiation and Bragg–Brentano geometry. Raman spectroscopy was also performed for all samples with a Micro-Raman Spectrometer (Thermo Nicolet, model DXR) equipped with a 780 nm laser and a 12× optical microscope. Spectra were
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

SERS active Ag–SiO2 nanoparticles obtained by laser ablation of silver in colloidal silica

  • Cristina Gellini,
  • Francesco Muniz-Miranda,
  • Alfonso Pedone and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2018, 9, 2396–2404, doi:10.3762/bjnano.9.224

Graphical Abstract
  • examined by UV–vis absorption spectroscopy, transmission electron microscopy and Raman spectroscopy. The surface enhanced Raman scattering (SERS) activity of these nanocomposites was tested using 2,2’-bipyridine as a molecular reporter and excitation in the visible and near-IR spectral regions. The
  • of the present work is to apply laser ablation to the fabrication of new materials for surface enhanced Raman scattering (SERS) [15][16], focusing on silver and silica nanoparticles in aqueous suspension. This research was undertaken for three main reasons. The first is that silver nanoparticles that
  • power meter (model 362; Scientech, Boulder, CO, USA) giving ≈5% accuracy in the 300–1000 nm spectral range. FT-SERS measurements were collected with a Fourier transform Raman spectrometer (Bruker Optics, Model MultiRam), equipped with a broad range quartz beamsplitter, an air-cooled Nd:YAG laser
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells

  • Mirco Ruttert,
  • Florian Holtstiege,
  • Jessica Hüsker,
  • Markus Börner,
  • Martin Winter and
  • Tobias Placke

Beilstein J. Nanotechnol. 2018, 9, 2381–2395, doi:10.3762/bjnano.9.223

Graphical Abstract
  • disassembling the cell in a glove box and assembling of a full cell using the prelithiated Si/C electrode as the negative electrode. Characterization methods A Bruker Senterra Raman microscope (Bruker Optics Inc.) was used to record the Raman spectra using a green laser with a wavelength of 532 nm and a laser
  • any further sharp reflections, other than that of the crystalline Si. The amorphous nature of the carbon matrix was also confirmed with the help of Raman spectroscopy, as depicted in Figure 3c. Both Si/C composites, as well as the pure carbon matrix exhibit two bands at 1,345 cm−1 and 1,593 cm−1 that
  • the pure Si-NPs (c, d) and an EDX mapping of the C:Si 80:20 composite, showing the Si distribution (=white areas) within the matrix (f) and the corresponding SEM micrograph (e). TGA results (a), XRD patterns (b) and Raman spectra (c) of the Si/C composites with a carbon to silicon ratio of 100:0, 90
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2018

Nanotribology

  • Enrico Gnecco,
  • Susan Perkin,
  • Andrea Vanossi and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 2330–2331, doi:10.3762/bjnano.9.217

Graphical Abstract
  • techniques for materials characterization are those typical of surface science (e.g., X-ray diffraction, SEM, TEM, XPS and Raman spectroscopy), more specific to nanotribology are nanoindenters, nanotribometers, quartz force microbalance and especially atomic force microscopy (AFM), which, without a doubt
PDF
Editorial
Published 28 Aug 2018

Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode

  • Valerio F. Gili,
  • Lavinia Ghirardini,
  • Davide Rocco,
  • Giuseppe Marino,
  • Ivan Favero,
  • Iännis Roland,
  • Giovanni Pellegrini,
  • Lamberto Duò,
  • Marco Finazzi,
  • Luca Carletti,
  • Andrea Locatelli,
  • Aristide Lemaître,
  • Dragomir Neshev,
  • Costantino De Angelis,
  • Giuseppe Leo and
  • Michele Celebrano

Beilstein J. Nanotechnol. 2018, 9, 2306–2314, doi:10.3762/bjnano.9.215

Graphical Abstract
  • amplification [22] and enhanced Raman scattering [23] have been recently suggested. In this framework, AlxGa1−xAs, a III–V semiconductor, has become a popular material for nonlinear photonics thanks to its non-centrosymmetric structure and other important key assets including: i) a large band gap enabling TPA
PDF
Album
Full Research Paper
Published 27 Aug 2018

Nanoscale characterization of the temporary adhesive of the sea urchin Paracentrotus lividus

  • Ana S. Viana and
  • Romana Santos

Beilstein J. Nanotechnol. 2018, 9, 2277–2286, doi:10.3762/bjnano.9.212

Graphical Abstract
  • proteinaceous fibres [12] that have been identified as amyloid fibres using the fluorochrome dye thioflavine-T, in addition to Raman spectroscopy and AFM [1]. AFM revealed a series of sawtooth mechanical responses reflecting the repetitive breaking of sacrificial bonds within an intermolecular β-sheet as
PDF
Album
Full Research Paper
Published 24 Aug 2018

The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement

  • Nicolae Leopold,
  • Andrei Stefancu,
  • Krisztian Herman,
  • István Sz. Tódor,
  • Stefania D. Iancu,
  • Vlad Moisoiu and
  • Loredana F. Leopold

Beilstein J. Nanotechnol. 2018, 9, 2236–2247, doi:10.3762/bjnano.9.208

Graphical Abstract
  • Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania 10.3762/bjnano.9.208 Abstract Chloride-capped silver nanoparticles (Cl-AgNPs) allow for high-intensity surface-enhanced Raman scattering (SERS) spectra of cationic molecules to be obtained (even at nanomolar concentration) and may also play a key role in
  • seems to prevail over the Raman enhancement due to nanoparticle aggregation. Keywords: chloride activation; electronic coupling; photoreduction; silver nanoparticles; SERS-active sites; SERS switch-on effect; Introduction The most common surface-enhanced Raman scattering (SERS) substrate is the silver
  • by Ag+ reduction with sodium borohydride [2], or, more recently, with hydroxylamine hydrochloride (hya-AgNPs) [3]. As we will show in the present study, the higher Raman enhancement of the hya-AgNPs compared to as-synthesized cit-AgNPs arises from the presence of chemisorbed Cl− ions, which form SERS
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018
Other Beilstein-Institut Open Science Activities