Search results

Search for "biocompatibility" in Full Text gives 232 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Comparison of the interactions of daunorubicin in a free form and attached to single-walled carbon nanotubes with model lipid membranes

  • Dorota Matyszewska

Beilstein J. Nanotechnol. 2016, 7, 524–532, doi:10.3762/bjnano.7.46

Graphical Abstract
  • stability, robustness, high drug carrying capacity and ability to penetrate cell membranes [15]. Although toxicity of the nanotubes is an issue, it strongly depends on the dimensions and type of functionalization, which may significantly increase their biocompatibility [16][17]. There are different
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2016

Surface coating affects behavior of metallic nanoparticles in a biological environment

  • Darija Domazet Jurašin,
  • Marija Ćurlin,
  • Ivona Capjak,
  • Tea Crnković,
  • Marija Lovrić,
  • Michal Babič,
  • Daniel Horák,
  • Ivana Vinković Vrček and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 246–262, doi:10.3762/bjnano.7.23

Graphical Abstract
  • biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP
  • biological media, may be achieved by electrostatic or steric repulsions [30][31][32]. Various types of surface coatings have been shown to affect NP properties, particularly to improve their biocompatibility and stability against agglomeration [30][33][34][35]. Proteins or biologically-compatible surfactants
  • AgNPs and SPIONs with various coatings are used in many nanotherapeutic and consumer products [44], it has become critical to fill the knowledge gap surrounding the mechanisms of colloidal destabilization including the role of surface coating in the biocompatibility of metallic NP. The systematically
PDF
Album
Full Research Paper
Published 15 Feb 2016

Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

  • Elena Dellacasa,
  • Li Zhao,
  • Gesheng Yang,
  • Laura Pastorino and
  • Gleb B. Sukhorukov

Beilstein J. Nanotechnol. 2016, 7, 81–90, doi:10.3762/bjnano.7.10

Graphical Abstract
  • morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier
  • for sustained release. Keywords: biocompatibility; layer-by-layer assembly; microcapsules; poly(lactic acids); stereocomplex; Introduction The polycationic/polyanionic layer-by-layer (LBL) deposition on surfaces has been widely studied since the first description by Decher et al. [1][2][3]. The
  • aliphatic polyester poly(lactic acid) (PLA) has been widely used in the biomedical field due to its extraordinary biocompatibility, biodegradability and mechanical properties [19][30][31][32][33]. Lactic acid, which is the degraded product from PLA, is fully biocompatible in human bodies, and therefore
PDF
Album
Full Research Paper
Published 21 Jan 2016

pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles

  • Manuel Häuser,
  • Klaus Langer and
  • Monika Schönhoff

Beilstein J. Nanotechnol. 2015, 6, 2504–2512, doi:10.3762/bjnano.6.260

Graphical Abstract
  • biocompatibility and its hydrolytic biodegradability which varies in dependence of the relative molar ratio of the monomeric compounds [9]. Subsequent optimization of PLGA-based nanostructures is generally required in order to add specific properties, such as reduced opsonisation [10], a prolonged half-life [11
PDF
Album
Full Research Paper
Published 30 Dec 2015

Silica-coated upconversion lanthanide nanoparticles: The effect of crystal design on morphology, structure and optical properties

  • Uliana Kostiv,
  • Miroslav Šlouf,
  • Hana Macková,
  • Alexander Zhigunov,
  • Hana Engstová,
  • Katarína Smolková,
  • Petr Ježek and
  • Daniel Horák

Beilstein J. Nanotechnol. 2015, 6, 2290–2299, doi:10.3762/bjnano.6.235

Graphical Abstract
  • enable further functionalization and increase biocompatibility and stability in aqueous media, preventing particle aggregation. Keywords: lanthanide; nanoparticles; oleylamine; silica; upconversion; Introduction Due to their unique physicochemical properties, nanometer-scale materials are finding
  • functionalization and biocompatibility [27]. We herein report the preparation of OM–NaYF4:Yb3+/Er3+ nanoparticles with controlled morphology, size, composition, phase and luminescence. Thorough particle characterization was performed to elucidate the relationship between synthetic conditions and particle structure
PDF
Album
Full Research Paper
Published 03 Dec 2015

Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies

  • Balazs Farkas,
  • Marina Rodio,
  • Ilaria Romano,
  • Alberto Diaspro,
  • Romuald Intartaglia and
  • Szabolcs Beke

Beilstein J. Nanotechnol. 2015, 6, 2217–2223, doi:10.3762/bjnano.6.227

Graphical Abstract
  • of chemical similarity between synthetic HA and the natural bone mineral, a large number of studies have introduced synthetic HA as bone replacement material for biomedical applications [3][4]. The benefits of synthetic HA, most notably its biocompatibility, slow biodegradability and good
PDF
Album
Full Research Paper
Published 25 Nov 2015

Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

  • Amirreza Shayganpour,
  • Alberto Rebaudi,
  • Pierpaolo Cortella,
  • Alberto Diaspro and
  • Marco Salerno

Beilstein J. Nanotechnol. 2015, 6, 2183–2192, doi:10.3762/bjnano.6.224

Graphical Abstract
  • dental and orthopedic implants, thanks to its very good strength, corrosion resistance and biocompatibility [1][2]. Despite the very high success rate of Ti dental implants (>90%), there is still room for optimization of osteointegration, particularly for diabetics, smokers and oncology patients [3]. As
  • explored for APA also [10][11][12]. Generally speaking, oxide inertness provides biocompatibility, while controlled porous patterning allows for tuning the roughness for optimized stimulation of living-cell response. The role of nanotopography in guiding cell differentiation and tissue generation is not
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2015

Temperature-dependent breakdown of hydrogen peroxide-treated ZnO and TiO2 nanoparticle agglomerates

  • Sinan Sabuncu and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 1897–1903, doi:10.3762/bjnano.6.193

Graphical Abstract
  • quantities is nearly impossible using current approaches, the surface chemistry can only be considered as an alternative to reduce the possible toxic effects. An appropriate functional group on the NP surface may improve biocompatibility and stability in various environments. In our previous study, we
PDF
Album
Full Research Paper
Published 14 Sep 2015

Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications

  • Hanieh Shirazi,
  • Maryam Daneshpour,
  • Soheila Kashanian and
  • Kobra Omidfar

Beilstein J. Nanotechnol. 2015, 6, 1677–1689, doi:10.3762/bjnano.6.170

Graphical Abstract
  • . Moreover, the results of the MTT assay showed no significant cytotoxicity effect when the Au/TMC/Fe3O4 nanocomposites were applied in vitro. These TMC-containing magnetic nanoparticles are well-coated by Au nanoparticles and have good biocompatibility and can thus play the role of a platform or a label in
  • ), polycyanoacrylate, alginate, gelatin, and chitosan [19][23][24]. Among these polymers, chitosan has received significant commercial attention due to its outstanding properties such as nontoxicity, biocompatibility, biodegradability, adsorption, and its ability to form films and to chelate metal ions [25][26]. This
  • biocompatibility), they can be utilized as catalysts, labels, and as a protective substrate, especially for immobilization of biomolecules in various fields of modern science [29][30]. Au nanoparticles are extensively used in the design and construction of fuel cells and many types of sensors (e.g
PDF
Album
Full Research Paper
Published 03 Aug 2015

PLGA nanoparticles as a platform for vitamin D-based cancer therapy

  • Maria J. Ramalho,
  • Joana A. Loureiro,
  • Bárbara Gomes,
  • Manuela F. Frasco,
  • Manuel A. N. Coelho and
  • M. Carmo Pereira

Beilstein J. Nanotechnol. 2015, 6, 1306–1318, doi:10.3762/bjnano.6.135

Graphical Abstract
  • biocompatibility, biodegradability, mechanical strength, FDA approval and low synthesis complexity. One of the most attractive candidates is poly(lactic-co-glycolic acid) (PLGA), which is a copolymer of poly(lactic acid) (PLA) and poly(glycolic acid) (PGA) [18][19]. We expect that vitamin D3 encapsulation in these
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2015

Tattoo ink nanoparticles in skin tissue and fibroblasts

  • Colin A. Grant,
  • Peter C. Twigg,
  • Richard Baker and
  • Desmond J. Tobin

Beilstein J. Nanotechnol. 2015, 6, 1183–1191, doi:10.3762/bjnano.6.120

Graphical Abstract
  • toxicity or biocompatibility of nanoparticles is an extremely important consideration for many of the aforementioned proposed applications. In particular carbon nanotubes, commonly used in applications such as drug delivery [10] and directed growth of neuron cells [11], have been shown to exhibit
PDF
Album
Full Research Paper
Published 20 May 2015

Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy

  • M. Kalyan Phani,
  • Anish Kumar,
  • T. Jayakumar,
  • Walter Arnold and
  • Konrad Samwer

Beilstein J. Nanotechnol. 2015, 6, 767–776, doi:10.3762/bjnano.6.79

Graphical Abstract
  • to the good corrosion resistance and biocompatibility, Ti-6Al-4V is also widely used in making load-bearing metal implants [20]. Different studies have been reported on phase transformations [21] and mechanical property variations with various phases [22] in Ti-6Al-4V. Kumar et al. [1] have
PDF
Album
Full Research Paper
Published 18 Mar 2015

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

  • Ulrike Taylor,
  • Daniela Tiedemann,
  • Christoph Rehbock,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2015, 6, 651–664, doi:10.3762/bjnano.6.66

Graphical Abstract
  • ] and have also been noted to cause a drop in sperm motility [62]. Therefore, BSA-coating might be a suitable way to increase nanoparticle biocompatibility. Sperm membrane integrity and morphology, two further important sperm viability parameters, remained unaffected by any of the nanoparticle
PDF
Album
Video
Full Research Paper
Published 05 Mar 2015

Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: a study of functionalization and stability

  • Ognen Pop-Georgievski,
  • Dana Kubies,
  • Josef Zemek,
  • Neda Neykova,
  • Roman Demianchuk,
  • Eliška Mázl Chánová,
  • Miroslav Šlouf,
  • Milan Houska and
  • František Rypáček

Beilstein J. Nanotechnol. 2015, 6, 617–631, doi:10.3762/bjnano.6.63

Graphical Abstract
  • strength, appropriate Young’s modulus, outstanding biocompatibility and excellent corrosion resistance make commercially pure titanium a highly favored, biocompatible, metallic material [2]. The biocompatibility and corrosion resistance of titanium surfaces is closely related to the presence of a
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2015

Entropy effects in the collective dynamic behavior of alkyl monolayers tethered to Si(111)

  • Christian Godet

Beilstein J. Nanotechnol. 2015, 6, 583–594, doi:10.3762/bjnano.6.60

Graphical Abstract
  • surface chemistry, surface energy, biocompatibility, friction, corrosion, liquid chromatography, interfacial interactions and electronic transport [1][2][3][4][5][6]. More recent studies have been focused on the functionalization of nanostructures. However, in spite of a large number of experimental and
PDF
Album
Full Research Paper
Published 26 Feb 2015

Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells

  • Syeda Arooj,
  • Samina Nazir,
  • Akhtar Nadhman,
  • Nafees Ahmad,
  • Bakhtiar Muhammad,
  • Ishaq Ahmad,
  • Kehkashan Mazhar and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2015, 6, 570–582, doi:10.3762/bjnano.6.59

Graphical Abstract
  • potential cytotoxicity, biocompatibility and biosafety of such particles in vitro as well as in vivo. Experimental Reagents Acetic acid, DMSO, ethylenediaminetetraacetic acid disodium salt dihydrate (Na2EDTA·2H2O), FeSO4, L-glutamine, hydrochloric acid (HCl), mannitol, penicillin-G, polyethylene glycol (PEG
PDF
Album
Full Research Paper
Published 26 Feb 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • biocompatibility of these NPs was investigated by standard MTT cell proliferation assay. Studies suggested that the cell viability was maintained at 83% even after a high dose of 500 µg·mL−1 of the nanocomposites. To check the applicability of these nanocomposites as fluorescence imaging agents, Gastric SGC7901
  • was more prominent than that of LSMO@SiF@Si-w, which was attributed to the fact that the latter contains less fluorescein. To check the biocompatibility of these nanocomposites, in vitro studies were carried out on HeLa cells and primary skin fibroblasts. The studies suggested that the HeLa cells
  • NPs was 4.0 emu/g. To observe the biocompatibility of these nanocomposites, both in vitro and in vivo studies were performed with HEK293 cells (human embryonic kidney 293 cells) and mice, respectively. Studies on HEK293 showed reasonable growth on treatment with 50 µg/mL dose of these hybrid
PDF
Album
Review
Published 24 Feb 2015

Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition

  • Nicolas Sobel,
  • Christian Hess,
  • Manuela Lukas,
  • Anne Spende,
  • Bernd Stühn,
  • M. E. Toimil-Molares and
  • Christina Trautmann

Beilstein J. Nanotechnol. 2015, 6, 472–479, doi:10.3762/bjnano.6.48

Graphical Abstract
  • silica nanopores sculptured by electron or kiloelectronvolt-ion beams, mesoscopic silica, or silica nanotubes. Such systems are of interest for numerous applications due to their facile surface functionalization, hydrophilic nature, and biocompatibility [29]. For the deposition of SiO2 on polymer
PDF
Album
Full Research Paper
Published 16 Feb 2015

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

  • Lisa Landgraf,
  • Ines Müller,
  • Peter Ernst,
  • Miriam Schäfer,
  • Christina Rosman,
  • Isabel Schick,
  • Oskar Köhler,
  • Hartmut Oehring,
  • Vladimir V. Breus,
  • Thomas Basché,
  • Carsten Sönnichsen,
  • Wolfgang Tremel and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2015, 6, 300–312, doi:10.3762/bjnano.6.28

Graphical Abstract
  • better insight into general rules determining the biocompatibility of gold, Janus and semiconductor (quantum dot) nanoparticles. Endothelial cells were subject of this study, since blood is the first barrier after intravenous nanoparticle application. In particular, stronger effects on the viability of
  • by caveolae-mediated endocytosis and nanoparticles with a size of 40 nm are taken up by clathrin-mediated internalization and macropinocytosis. Our results can be summarized to formulate five general rules, which are further specified in the text and which determine the biocompatibility of
  • nanoparticles on endothelial cells. Our findings will help to design new nanoparticles with optimized properties concerning biocompatibility and uptake behavior with respect to the respective intended application. Keywords: cell viability; gold nanoparticles; internalization; Janus particles; quantum dots
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2015

The effect of surface charge on nonspecific uptake and cytotoxicity of CdSe/ZnS core/shell quantum dots

  • Vladimir V. Breus,
  • Anna Pietuch,
  • Marco Tarantola,
  • Thomas Basché and
  • Andreas Janshoff

Beilstein J. Nanotechnol. 2015, 6, 281–292, doi:10.3762/bjnano.6.26

Graphical Abstract
  • -particle tracking), was shown to compromise the integrity of the cytoskeletal and plasma membrane dynamics, as evidenced by electric cell–substrate impedance sensing. Keywords: biocompatibility; CdSe/ZnS; cytotoxicity; ECIS; quantum dots; single-particle tracking; Introduction Quantum dots (QDs) are
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2015

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • models following exposure with silica nanoparticles (SiO2-NP) [12][13][14]. Inorganic SiO2-NP hold great potential for several biomedical applications, including the selective targeting of cancer cells as well as drug or gene delivery systems due to their favorable biocompatibility and modification
  • of cancer cells as well as drug or gene delivery systems due to their favorable biocompatibility and modification possibilities [15][16]. However, labeling of NP always possesses the risk of changing their bioreactivity [20]. Thus, the site of labeling and the properties of the fluorochrome may have
PDF
Album
Review
Published 23 Jan 2015

Release behaviour and toxicity evaluation of levodopa from carboxylated single-walled carbon nanotubes

  • Julia M. Tan,
  • Jhi Biau Foo,
  • Sharida Fakurazi and
  • Mohd Zobir Hussein

Beilstein J. Nanotechnol. 2015, 6, 243–253, doi:10.3762/bjnano.6.23

Graphical Abstract
  • intense research for theranostic delivery systems, especially in the field of cancer chemotherapy [7][8][9]. Their attractive properties such as good biocompatibility and excellent chemical and thermal stability ensure the stability and solubility of drugs in aqueous environments. Furthermore, their
  • , and at the same time, further enhance their degree of biocompatibility [7]. This is because non-functionalized CNTs tend to aggregate into bundles due to van der Waals interactions and hence, they might induce apoptosis (cell death) after administration into the human body. Parkinson’s disease (PD) or
PDF
Album
Full Research Paper
Published 22 Jan 2015

The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice

  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Markus Heine,
  • Christian Waurisch,
  • Gordon M. Stachowski,
  • Stephen G. Hickey,
  • Alexander Eychmüller,
  • Jörg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 111–123, doi:10.3762/bjnano.6.11

Graphical Abstract
  • ][23]. In addition, most tissues contain substantial concentration of background iron that can be higher than the amount of injected nanoparticulate iron. For use in animal studies and for the eventual transfer to clinical applications, more detailed information on the biocompatibility, in vivo
PDF
Album
Full Research Paper
Published 09 Jan 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • biocompatibility. The mPEG–DSPE/BNNTs suspension was expected to be stable in water because fatty acids from DSPE should noncovalently interact with BNNTs and the hydrophilic mPEG could aid in the dispersion of the BNNTs in water. Indeed, the mPEG–DSPE/BNNTs were highly dispersed in water and slightly so in
  • isothiocyanate (FITC). Chinese hamster ovary (CHO) cells were treated with this complex. It was found that the coated BNNTs had specific molecular recognition capability [70]. Glycol chitosan (GC) is widely used due to its biocompatibility and good solubility over a broad pH range [71]. The BNNTs were coated
  • studied and found that the BNNTs were significantly toxic at 200 µg/mL. The biocompatibility tests indicated that the pure BNNTs were good candidates at nontoxic concentrations for pharmacological applications [76]. The cell lines A549, RAW264.7, 3T3-L1 and HEK293 were exposed to BNNTs. The authors
PDF
Album
Review
Published 08 Jan 2015

Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

  • Christina Rosman,
  • Sebastien Pierrat,
  • Marco Tarantola,
  • David Schneider,
  • Eva Sunnick,
  • Andreas Janshoff and
  • Carsten Sönnichsen

Beilstein J. Nanotechnol. 2014, 5, 2479–2488, doi:10.3762/bjnano.5.257

Graphical Abstract
  • addition to live cell imaging, a biocompatibility test was performed based on detecting the cell shape fluctuations of subconfluent cells cultured on small gold electrodes of 250 μm diameter, the so-called micromotion assay [18][19]. Electric cell–substrate impedance sensing (ECIS) is an electrochemical
  • ] used for particle synthesis. These CTAB molecules can be replaced by the inert polymer poly(ethylene glycol) (PEG) known for its biocompatibility [23]. Using PEG chains exhibiting either amine (NH2–PEG) or carboxy groups (COOH–PEG), the influence of exposed reactive groups was investigated. A strong
  • substrate, it is assumed that the interaction between the cell membrane and the nanoparticles was not strong enough to overcome the van der Waals forces keeping the particles attached to the substrate. The other stabilizer investigated, PEG, is considered to be biocompatible [23]. This biocompatibility
PDF
Album
Supp Info
Full Research Paper
Published 24 Dec 2014
Other Beilstein-Institut Open Science Activities