Search results

Search for "catalysis" in Full Text gives 296 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Deformation-driven catalysis of nanocrystallization in amorphous Al alloys

  • Rainer J. Hebert,
  • John H. Perepezko,
  • Harald Rösner and
  • Gerhard Wilde

Beilstein J. Nanotechnol. 2016, 7, 1428–1433, doi:10.3762/bjnano.7.134

Graphical Abstract
PDF
Album
Letter
Published 11 Oct 2016

In situ characterization of hydrogen absorption in nanoporous palladium produced by dealloying

  • Eva-Maria Steyskal,
  • Christopher Wiednig,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2016, 7, 1197–1201, doi:10.3762/bjnano.7.110

Graphical Abstract
  • and catalysis [2]. One attractive method to produce nanostructured metals with macroscopic dimensions is dealloying, an (electro-)chemical process, which removes the less noble component from an alloy by selective etching [3]. Nanoporous palladium (np-Pd) produced by free corrosion [4] as well as
PDF
Album
Letter
Published 17 Aug 2016

High antiviral effect of TiO2·PL–DNA nanocomposites targeted to conservative regions of (−)RNA and (+)RNA of influenza A virus in cell culture

  • Asya S. Levina,
  • Marina N. Repkova,
  • Elena V. Bessudnova,
  • Ekaterina I. Filippova,
  • Natalia A. Mazurkova and
  • Valentina F. Zarytova

Beilstein J. Nanotechnol. 2016, 7, 1166–1173, doi:10.3762/bjnano.7.108

Graphical Abstract
  • Asya S. Levina Marina N. Repkova Elena V. Bessudnova Ekaterina I. Filippova Natalia A. Mazurkova Valentina F. Zarytova Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 8, Novosibirsk, 630090, Russia Institute of Catalysis
PDF
Album
Full Research Paper
Published 10 Aug 2016

Microscopic characterization of Fe nanoparticles formed on SrTiO3(001) and SrTiO3(110) surfaces

  • Miyoko Tanaka

Beilstein J. Nanotechnol. 2016, 7, 817–824, doi:10.3762/bjnano.7.73

Graphical Abstract
  • microscopy (TEM); Wulff construction; Introduction Metal nanoparticles on oxide substrates are one of the key materials in modern technology. Not only are they widely used in catalysis, there are also potential applications in nanoelectronics, spintronics, photonics, sensors, and fuel cells [1][2][3][4][5
PDF
Album
Full Research Paper
Published 07 Jun 2016

Facile synthesis of water-soluble carbon nano-onions under alkaline conditions

  • Gaber Hashem Gaber Ahmed,
  • Rosana Badía Laíño,
  • Josefa Angela García Calzón and
  • Marta Elena Díaz García

Beilstein J. Nanotechnol. 2016, 7, 758–766, doi:10.3762/bjnano.7.67

Graphical Abstract
  • carbonization; Introduction In the last twenty years, carbon based nanomaterials have received much research attention not only from a basic perspective but also from a practical point of view due to their use in a range of applications such as energy storage, tribology, electronics, medicine, catalysis and
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2016

Hierarchical coassembly of DNA–triptycene hybrid molecular building blocks and zinc protoporphyrin IX

  • Rina Kumari,
  • Sumit Singh,
  • Mohan Monisha,
  • Sourav Bhowmick,
  • Anindya Roy,
  • Neeladri Das and
  • Prolay Das

Beilstein J. Nanotechnol. 2016, 7, 697–707, doi:10.3762/bjnano.7.62

Graphical Abstract
  • ][4][5][6][7][8][9][10], polymers [11], metal complexes [12][13], and nanoparticles [14] have recently attracted substantial attention. These have potential applications in DNA detection [15][16][17], molecular electronics [18][19][20], catalysis [21], and drug delivery [22][23]. For the creation of
  • well-defined DNA nanostructures [40]. Additionally; these DNA–organic hybrids are endowed with better base pairing fidelity, stability, DNA economy and others [41][42]. Supramolecular structures having a confined space can accommodate small molecules that are suitable for catalysis and other
  • regard to the light-induced oxidation of DHR 123 than the corresponding free Zn PpIX due to enhanced local confinement of ROS in the composite. Therefore, considering this feature, this system could be explored further for PDT, photodynamic antimicrobial chemotherapy (PACT) and catalysis applications
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • conjunction with a plentitude of protocols established for the deposition of TMV on technical surfaces, it is thus likely that TMV will take over routine jobs in appropriate layouts in the longer run, and continue to forge ahead in encouraging novel concepts in biodetection, catalysis, electronics and further
PDF
Album
Review
Published 25 Apr 2016

Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size

  • Martin Schilling,
  • Paul Ziemann,
  • Zaoli Zhang,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2016, 7, 591–604, doi:10.3762/bjnano.7.52

Graphical Abstract
  • Martin Schilling Paul Ziemann Zaoli Zhang Johannes Biskupek Ute Kaiser Ulf Wiedwald Institute of Solid State Physics, Ulm University, 89069 Ulm, Germany Institute of Surface Chemistry and Catalysis, Ulm University, 89069 Ulm, Germany Electron Microscopy Group of Materials Science, Ulm University
PDF
Album
Full Research Paper
Published 21 Apr 2016

Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

  • Brunella Perito,
  • Emilia Giorgetti,
  • Paolo Marsili and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2016, 7, 465–473, doi:10.3762/bjnano.7.40

Graphical Abstract
  • : antibacterial activity; colloid; laser ablation; nanoparticles; silver; Introduction The interest in nanoscale metal particles is constantly growing as they find wide application in diverse fields ranging from sensing [1][2][3], medicine [4], catalysis [5][6][7][8], to astrobiology [9][10] and many others. In
PDF
Album
Full Research Paper
Published 18 Mar 2016

Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica

  • Liz M. Rösken,
  • Felix Cappel,
  • Susanne Körsten,
  • Christian B. Fischer,
  • Andreas Schönleber,
  • Sander van Smaalen,
  • Stefan Geimer,
  • Christian Beresko,
  • Georg Ankerhold and
  • Stefan Wehner

Beilstein J. Nanotechnol. 2016, 7, 312–327, doi:10.3762/bjnano.7.30

Graphical Abstract
  • metal nanoparticles as needed in catalysis has shown its theoretical ability as an extremely environmentally friendly production method in the last few years, even though the separation of the nanoparticles is challenging. Biosynthesis, summing up biosorption and bioreduction of diluted metal ions to
  • since there are widespread possibilities of usage [1][2][3]. Especially Au0-nanoparticles are used, e.g., in heterogeneous catalysis [4][5][6] or in various medical applications [7][8]. There is a growing field of research in microbiological approaches for the production of nanoparticles since more than
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2016

Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

  • Yongfeng Tong,
  • Tingming Jiang,
  • Azzedine Bendounan,
  • Makri Nimbegondi Kotresh Harish,
  • Angelo Giglia,
  • Stefan Kubsky,
  • Fausto Sirotti,
  • Luca Pasquali,
  • Srinivasan Sampath and
  • Vladimir A. Esaulov

Beilstein J. Nanotechnol. 2016, 7, 263–277, doi:10.3762/bjnano.7.24

Graphical Abstract
  • various applications such as catalysis, sensor development, hydrogen storage, thin films, and molecular electronics has focused on the study of self-assembled monolayers (SAMs) with different combinations of molecular architecture, and in particular, different molecule anchoring head groups. The latter
  • particular the characteristics of charge transport through such a sulfidic interface layer would be strongly affected. In the context of the use of nanoparticles in various applications [49][50][51][52] such as in catalysis, sensing or hydrogen storage, capping the nanoparticles using thiols leads to
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2016

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • energy transfer techniques for the production of metallic NPs are reviewed. Review Applications of nanotechnology Due to smaller size and large specific area, NPs exhibit exceptional properties for applications in different fields including chemistry (catalysis, sensors, and polymers), physics (optics
  • , surface-enhanced Raman scattering (SERS) detection and catalysis of chemical reactions. Furthermore, biocompatible and functionalized NPs have applications in diagnosis and treatment of cancer. For these two purposes, fluorescent and magnetic nanocrystals for detection of tumors and also nanosystems for
  • synthesis of metallic NPs, using biopolymers such as chitosan can eliminate the need to use capping agents [56][86][99]. Catalysis: Selecting proper catalytic reactions can enhance the overall efficiency of the process by decreasing the activation energy and increasing product selectivity. These advantages
PDF
Album
Review
Published 10 Dec 2015

Self-organization of gold nanoparticles on silanated surfaces

  • Htet H. Kyaw,
  • Salim H. Al-Harthi,
  • Azzouz Sellai and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2015, 6, 2345–2353, doi:10.3762/bjnano.6.242

Graphical Abstract
  • structures [8]. AuNPs have been studied intensively for a wide range of applications such as catalysis [9], biosensing [10], colorimetric sensing [11], optical sensing (surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS)) [12][13], photonics [13][14], photovoltaic devices [15] and
PDF
Album
Full Research Paper
Published 10 Dec 2015

Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol

  • Akbar Rostami-Vartooni,
  • Mohammad Alizadeh and
  • Mojtaba Bagherzadeh

Beilstein J. Nanotechnol. 2015, 6, 2300–2309, doi:10.3762/bjnano.6.236

Graphical Abstract
  • onto the Cu surface; followed by electron transfer from the BH4− to 4-NP; and finally, desorption of the generated 4-aminophenol from the surface of the catalyst [37][38]. Since catalysis takes place on the Cu surface, Cu NPs/bentonite are much more reactive than the unmodified natural bentonite
PDF
Album
Full Research Paper
Published 03 Dec 2015

Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

  • Amirreza Shayganpour,
  • Alberto Rebaudi,
  • Pierpaolo Cortella,
  • Alberto Diaspro and
  • Marco Salerno

Beilstein J. Nanotechnol. 2015, 6, 2183–2192, doi:10.3762/bjnano.6.224

Graphical Abstract
  • anodic porous titania (APT). APT is usually of interest for applications in catalysis or optoelectronics [7]. Here we present its use as a coating for nanopatterning the surfaces of dental implants. One advantage of APT for applications in biomedicine is with respect to its analogue obtained on Al
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2015

NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials

  • Katre Juganson,
  • Angela Ivask,
  • Irina Blinova,
  • Monika Mortimer and
  • Anne Kahru

Beilstein J. Nanotechnol. 2015, 6, 1788–1804, doi:10.3762/bjnano.6.183

Graphical Abstract
  • , 31%), catalysis (10,435, 11%) and drug delivery (8,838, 10%) (Figure 1, Table S1, Supporting Information File 1). However, the exact production volumes of ENMs are not publicly available [4]. Piccinno et al. estimated based on a survey sent to companies producing and using ENMs that the most produced
PDF
Album
Supp Info
Full Research Paper
Published 25 Aug 2015

Atomic scale interface design and characterisation

  • Carla Bittencourt,
  • Chris Ewels and
  • Arkady V. Krasheninnikov

Beilstein J. Nanotechnol. 2015, 6, 1708–1711, doi:10.3762/bjnano.6.174

Graphical Abstract
  • chemical properties and processes occurring at the surface on a nanoscale are of crucial concern. Nanostructured materials show a great application potential in the areas of nanoelectronics, catalysis, and light harvesting/energy storage, an excellent example being the capability of titanate nanoribbons to
  • simulation of nanoparticle shapes. In the past decade, many TEM and catalysis experiments were simulated using this multi-scale approach with remarkable success. First-principle calculations have also provided insight into the electronic properties of low-dimensional materials, for example graphene doping by
PDF
Editorial
Published 10 Aug 2015

Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications

  • Hanieh Shirazi,
  • Maryam Daneshpour,
  • Soheila Kashanian and
  • Kobra Omidfar

Beilstein J. Nanotechnol. 2015, 6, 1677–1689, doi:10.3762/bjnano.6.170

Graphical Abstract
  • as catalysis, electronics, photonics, sensors, microfluidic lateral flow devices, medical diagnosis, and related sciences [6][7][8][9][10]. One of the most important classes of metal nanoparticles are magnetic nanoparticles. Due to their unique properties, such as magnetic resonance momentum, super
  • . The efficacy of these TMC- and Au-containing magnetic nanostructures could benefit applications such as electrochemical labels, sensory probes, electronic conductors, therapeutic agents, organic photovoltaics, drug delivery in biological and medical applications, and catalysis due to their combined
PDF
Album
Full Research Paper
Published 03 Aug 2015

Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction

  • Marcin Krajewski,
  • Wei Syuan Lin,
  • Hong Ming Lin,
  • Katarzyna Brzozka,
  • Sabina Lewinska,
  • Natalia Nedelko,
  • Anna Slawska-Waniewska,
  • Jolanta Borysiuk and
  • Dariusz Wasik

Beilstein J. Nanotechnol. 2015, 6, 1652–1660, doi:10.3762/bjnano.6.167

Graphical Abstract
  • treatment [3] as well as labelling and separation of biological materials [4]. Besides the biomedical exploitation, iron-based nanostructures can be used in the fields of data storage [5], catalysis [6], energy storage [7] and environmental remediation [8]. However, different properties are required for
PDF
Album
Full Research Paper
Published 29 Jul 2015

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • devices, catalysis supports, battery electrodes, and many more. The research of carbon nanohybrid materials, including both the fundamental study of carbon nanostructures and the understanding of interface formation between nano-carbon and the host matrix, is essential to the understanding of their
  • [43][110]. The advantage of this process, however, is the creation of a unique in situ platform in which active nanostructures can be studied at atomic resolution along the process [111]. It has found useful applications in the study of catalysis where functionalized carbon nanostructures are
PDF
Album
Review
Published 16 Jul 2015

Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

  • Szymon Godlewski,
  • Jakub S. Prauzner-Bechcicki,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymoński

Beilstein J. Nanotechnol. 2015, 6, 1498–1507, doi:10.3762/bjnano.6.155

Graphical Abstract
  • example, titanium dioxide surfaces are exceptionally useful in various applications, including the catalysis, solar energy conversion, gas sensing and others [8][9][10][11][12][13][14][15]. Merging two classes of materials, i.e., metal oxide surfaces with organic molecules, seems to be one of the most
PDF
Album
Full Research Paper
Published 10 Jul 2015

Scalable, high performance, enzymatic cathodes based on nanoimprint lithography

  • Dmitry Pankratov,
  • Richard Sundberg,
  • Javier Sotres,
  • Dmitry B. Suyatin,
  • Ivan Maximov,
  • Sergey Shleev and
  • Lars Montelius

Beilstein J. Nanotechnol. 2015, 6, 1377–1384, doi:10.3762/bjnano.6.142

Graphical Abstract
  • -electrocatalysis [24]. kcatapp values for BOx/Au and BOx/NIL/Au electrodes were found to be 30 and 39 s−1, respectively (Supporting Information File 1, Table S1), whereas kcat in homogeneous catalysis was measured to be 57 s−1 (see above). kcatapp values for BOx/Au and BOx/NIL/Au electrodes were recorded at 30 and
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2015

Formation of substrate-based gold nanocage chains through dealloying with nitric acid

  • Ziren Yan,
  • Ying Wu and
  • Junwei Di

Beilstein J. Nanotechnol. 2015, 6, 1362–1368, doi:10.3762/bjnano.6.140

Graphical Abstract
  • -enhanced Raman scattering (SERS), imaging [9], and catalysis [10][11]. Up to now, several methods, such as template-based methods, Kirkendall effect, Ostward ripening, and galvanic replacement, have been developed to synthesize hollow metal nanostructures [12][13][14]. Among them, the galvanic replacement
  • the Ag dissolves to generate a hollow structure. This leads to the formation of Au NCs with hollow interiors and porous surfaces. In some applications such as catalysis, sensors, and SERS, it is favorable for metal nanomaterials to be supported by a solid substrate. Although the fabrication of Au NCs
PDF
Album
Full Research Paper
Published 18 Jun 2015

The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes

  • Abdel-Aziz El Mel,
  • Ryusuke Nakamura and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 1348–1361, doi:10.3762/bjnano.6.139

Graphical Abstract
  • biotechnology [8], batteries [9][10][11][12][13], sensors [14][15][16], catalysis [17][18][19], photodetectors [20], electrochromic devices [21] and supercapacitors [22]. Three years after the pioneering work of Yin et al. [7], the progress in the synthesis of nanotubes and hollow nanoparticles using the
PDF
Album
Review
Published 18 Jun 2015

Heterometal nanoparticles from Ru-based molecular clusters covalently anchored onto functionalized carbon nanotubes and nanofibers

  • Deborah Vidick,
  • Xiaoxing Ke,
  • Michel Devillers,
  • Claude Poleunis,
  • Arnaud Delcorte,
  • Pietro Moggi,
  • Gustaaf Van Tendeloo and
  • Sophie Hermans

Beilstein J. Nanotechnol. 2015, 6, 1287–1297, doi:10.3762/bjnano.6.133

Graphical Abstract
  • commercial Pt–Ru/C catalysts. The preparation methods for Pt–Ru/nanocarbon are varied and take inspiration from (i) electrochemistry (electrodeposition) [11][12], (ii) nanoparticle synthesis (polyol procedure) [13][14] or (iii) heterogeneous catalysis (impregnation/reduction). A fixed pH value during the
  • agglomeration, and in particular, their characterization at atomic resolution to prove their bimetal nature within individual nanoparticles. In order to test their potential application in catalysis, the carbon-supported nanoparticles are evaluated in ammonia synthesis, as a reference reaction with mature
  • technology. The goal is not to optimize the catalytic performance but rather to demonstrate proof-of-principle activity in a well-known reaction. The synthesis of ammonia from its constituting elements (N2 + 3H2) is one of the largest industrial processes based on heterogeneous catalysis [42]. Owing to the
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2015
Other Beilstein-Institut Open Science Activities