Search results

Search for "catalyst" in Full Text gives 354 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

  • Egor V. Lobiak,
  • Lyubov G. Bulusheva,
  • Ekaterina O. Fedorovskaya,
  • Yury V. Shubin,
  • Pavel E. Plyusnin,
  • Pierre Lonchambon,
  • Boris V. Senkovskiy,
  • Zinfer R. Ismagilov,
  • Emmanuel Flahaut and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 2669–2679, doi:10.3762/bjnano.8.267

Graphical Abstract
  • concentration of incorporated nitrogen. The hybrid materials were tested as electrodes in a 1M H2SO4 electrolyte and the best performance was found for a nitrogen-enriched material produced using the Fe/Mo catalyst. From the electrochemical impedance spectroscopy data, it was concluded that the nitrogen doping
  • reduces the resistance at the carbon surface/electrolyte interface and the nanotubes permeating the porous carbon provide fast charge transport in the cell. Keywords: bimetallic catalyst; electrochemical impedance spectroscopy; N-doped carbon; porous carbon–carbon nanotube hybrid; supercapacitor
  • prepared hybrid materials [6][7][8][9]. Another less common strategy consists of CNT growth by catalytic chemical vapor deposition (CCVD) over catalyst nanoparticles predeposited on the graphitic surfaces [10][11][12][13]. The obtained hybrids are characterized by tight bonding between the components
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2017

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • storage [1][2][3][4]. The most common synthesis method for CNTs is chemical vapor deposition (CVD) [5][6][7][8], in which statistically distributed, metal-containing particles act as catalysts for CNT growth. Thereby, not only does the random position of the catalyst particles determine the position of
  • the CNT, but also the catalyst size, chemical composition and the surface structure has an influence on the growth of the CNTs [9][10][11][12]. Therefore, it is important to fabricate catalysts of controlled size and chemical composition at the desired spatial position in order to fabricate CNTs in
  • before and after the CVD process) reveals that the approach was indeed successful. The details of the indicated region depicted in Figure 1e reveals the typical appearance of (multiwalled) CNTs in SEM [35]. The result is striking since each individual EBID Fe deposit acted as a catalyst for the growth of
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

  • Ling Liu,
  • Jingjing Shi,
  • Hongxia Cao,
  • Ruiyu Wang and
  • Ziwu Liu

Beilstein J. Nanotechnol. 2017, 8, 2425–2437, doi:10.3762/bjnano.8.241

Graphical Abstract
  • solvothermal process, highly dispersed MOx species were decorated on the surface of CeO2 yolk–shell nanospheres to form CeO2–MOx composites. As a CO oxidation catalyst, the CeO2–MOx composite yolk–shell nanospheres showed strikingly higher catalytic activity than naked CeO2 due to the strong synergistic
  • conversion as reached at a relatively low temperature of 145 °C over the CeO2–CuOx-2 sample. Furthermore, the CeO2–CuOx catalyst is more active than the CeO2–CoOx and CeO2–NiO catalysts, indicating that the catalytic activity is correlates with the metal oxide. Additionally, this versatile synthesis approach
  • ]. Taking the CeO2–CuO catalyst as a typical example, the improved catalytic activity is closely related to the synergistic interaction between copper and ceria, which promotes the exchange of charges between Ce4+/Ce3+ and Cu2+/Cu+ and leads to faster oxidation and reduction than that of the corresponding
PDF
Album
Full Research Paper
Published 16 Nov 2017

Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol

  • Xiao Shao,
  • Weiyue Xin and
  • Xiaohong Yin

Beilstein J. Nanotechnol. 2017, 8, 2264–2270, doi:10.3762/bjnano.8.226

Graphical Abstract
  • by reducing CO2 in isopropanol to methanol under UV-light irradiation. Experimental Catalyst synthesis Niobium oxide (Nb2O5, 99.99 wt %) was purchased from Aladdin Industrial Corporation. Potassium hydroxide (KOH, 96 wt %), isopropanol (C3H8O, 99.9 wt %), hydrochloric acid (HCl, 36.5 wt %), zinc
  • heated to 200 °C and kept for 48 h, where the precipitate was collected by centrifuging the mixture, then washed with ethanol and deionized water three times, and finally dried at 65 °C for 12 h for further characterization. Catalyst characterization The crystal structure of the synthesized materials
  • Raman system using a 325 nm laser. Photocatalytic reaction The photocatalytic reduction of CO2 to methanol was carried out at ambient conditions in a quartz container and batch operated slurry reactor with cooling jacket. 20 mg of the catalyst was added to 20 mL of isopropanol under magnetic stirring
PDF
Album
Full Research Paper
Published 30 Oct 2017

Ester formation at the liquid–solid interface

  • Nguyen T. N. Ha,
  • Thiruvancheril G. Gopakumar,
  • Nguyen D. C. Yen,
  • Carola Mende,
  • Lars Smykalla,
  • Maik Schlesinger,
  • Roy Buschbeck,
  • Tobias Rüffer,
  • Heinrich Lang,
  • Michael Mehring and
  • Michael Hietschold

Beilstein J. Nanotechnol. 2017, 8, 2139–2150, doi:10.3762/bjnano.8.213

Graphical Abstract
  • /bjnano.8.213 Abstract A chemical reaction (esterification) within a molecular monolayer at the liquid–solid interface without any catalyst was studied using ambient scanning tunneling microscopy. The monolayer consisted of a regular array of two species, an organic acid (trimesic acid) and an alcohol
  • . Here we present a chemical reaction (esterification) between trimesic acid (benzene-1,3,5-tricarboxylic acid; TMA) dissolved in an alcoholic solvent (undecan-1-ol or decan-1-ol) on a highly oriented pyrolytic graphite (HOPG) (0001) substrate. The reaction proceeds without catalyst and is controlled by
  • reaction proceeds typically slow and highly reversible without a catalyst. Dehydrating agents like sulfuric or sulfonic acid [15], or milder ones like dicyclohexylcarbodiimide [17], triphenylphosphane and diazenedicarboxylate [18] are used for esterification from organic acids. In UHV, an on-surface
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2017

Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

  • Bartosz Bartosewicz,
  • Marta Michalska-Domańska,
  • Malwina Liszewska,
  • Dariusz Zasada and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2017, 8, 2083–2093, doi:10.3762/bjnano.8.208

Graphical Abstract
  • coating step of the method described here, being a modification of the titania particle synthesis method described elsewhere [52][53], small volumes of the concentrated aqueous suspensions of synthesized NPs were transferred into a mixture of ethanol and acetonitrile. The hydrolysis reaction catalyst
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2017

A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process

  • Peter Krauß,
  • Jörg Engstler and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 2017–2025, doi:10.3762/bjnano.8.202

Graphical Abstract
  • employing a metal catalyst is a well-established method for synthesizing high-quality single-layer graphene. Yet the main challenge of the CVD process is the required transfer of a graphene layer from the substrate surface onto a chosen target substrate. This process is delicate and can severely degrade the
  • -down and bottom-up approaches to synthesize and isolate graphene, each having their own advantages and disadvantages [5][6][7][8][9][10][11][12]. The most common route to synthesize continuous, large-area graphene is chemical vapor deposition (CVD) using a carbon precursor on a planar metal catalyst
  • onto various substrates [14][22][23][24]. The transfer of CVD graphene by chemical etching is based on the redox reaction between the metal catalyst and an oxidizing agent in aqueous solution [22][23][25][26][27][28]. As the metal dissolves in the etchant solution, graphene remains floating on the
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2017

Synthesis and catalytic application of magnetic Co–Cu nanowires

  • Lijuan Sun,
  • Xiaoyu Li,
  • Zhiqiang Xu,
  • Kenan Xie and
  • Li Liao

Beilstein J. Nanotechnol. 2017, 8, 1769–1773, doi:10.3762/bjnano.8.178

Graphical Abstract
  • easily separated from the reaction mixture. Furthermore, they were applied to the hydrolysis system of ammonia borane as a catalyst for the first time. More importantly, the catalysis results showed that the bimetallic nanowires possessed appealing catalytic performance. Therefore, a rapid and facile
  • synthesis method is introduced which is capable of preparing bimetallic Co–Cu nanowires with great potential for industrial applications. Keywords: catalyst; Co–Cu nanowires; liquid phase reduction; magnetic materials; metal replacement; Findings In recent years, many researchers have been devoted to the
  • of H2 vs time for the hydrolysis of AB using bimetallic Co–Cu nanowires as a catalyst and the activity in terms of turnover frequency (TOF) [13] was calculated to be 6.17 (mol H2·min−1·(mol Co–Cu)−1). Furthermore, bimetallic Co–Cu nanowires could be separated easily from the catalytic system due to
PDF
Album
Letter
Published 25 Aug 2017

Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes

  • Lyubov G. Bulusheva,
  • Yuliya V. Fedoseeva,
  • Emmanuel Flahaut,
  • Jérémy Rio,
  • Christopher P. Ewels,
  • Victor O. Koroteev,
  • Gregory Van Lier,
  • Denis V. Vyalikh and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 1688–1698, doi:10.3762/bjnano.8.169

Graphical Abstract
  • understanding of the three fluorination processes. CF4 fluorination is known to give reactive CF3, CF2 and F fragments, which can then bind directly with the surface [44][45]. In contrast F2 fluorination is expected to result in (1,2) ortho- or (1,4) para-addition, depending on the amount of HF catalyst [16
  • by catalytic chemical vapor deposition (CCVD) using CH4 (18 mol %) in H2 at 1000 °C and an Mg1−xCoxO solid solution as catalyst [23]. High-resolution transmission electron microscopy (HRTEM) showed that a typical sample consists of ca. 80% DWCNTs, 20% SWCNTs, and a few triple-walled nanotubes. The
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • the effect of the key process parameters such as deposition temperature, discharge power and distance from plasma source to substrate on the catalyst-free growth of VGNs in microwave plasmas. A direct evidence for the initiation of vertical growth through nanoscale graphitic islands is obtained from
  • growth. Plasma-enhanced chemical vapor deposition (PECVD) is one of the most suitable techniques for the transfer-free and catalyst-free growth of VGNs at low temperature [15][16][17][18][19][20]. Various research groups reported the growth mechanism of VGNs during PECVD [21][22][23][24]. In brief, the
  • morphology and structure of VGNs. In this study, the evolution and mechanism of catalyst-free growth of VGNs on the nanographitic structure is described. The systematic characterization of the morphology and structure was carried out by field-emission scanning electron microscopy (FESEM), high-resolution
PDF
Album
Full Research Paper
Published 10 Aug 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • mechanical properties and a potential for a variety of applications; such as supercapacitor applications, battery applications, and catalyst support materials. Polyacrylonitrile (PAN) is one of the well-known precursor for obtaining carbon nanofibers that have a diameter ranging between nanometers and
PDF
Album
Full Research Paper
Published 07 Aug 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • precursor, exhibited different microstructure and isoelectric points [91]. The g-C3N4 prepared by the thermal condensation method generally exhibit low surface area, which can limit its practical applications, as high specific surface area of catalyst is highly desirable for enhanced photocatalytic activity
  • semiconductor material occurs in three main steps, (1) absorption of light, (2) charge separation, (3) redox reactions on the catalyst surface. The first step involves the absorption of light by the photocatalyst and generation of electron–hole pairs in the CB and VB. The second step involves the charge
  • produces the catalytic activity using energy from light without undergoing any change in itself [104]. The photocatalytic activity depends on the generation of electron–hole pairs in the catalyst under the influence of light energy [105]. These photogenerated charge carriers then generate free radicals
PDF
Album
Review
Published 03 Aug 2017

Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion

  • Amit Singhania and
  • Shipra Mital Gupta

Beilstein J. Nanotechnol. 2017, 8, 1546–1552, doi:10.3762/bjnano.8.156

Graphical Abstract
  • for CO oxidation reaction in literature [6][7][8][9][10][11][12]. Recently, ZrO2 has been used as a catalyst and support in different catalytic reactions such as solid-oxide fuel cells, ethanol reforming, hydrogen generation and hydrogenation [13][14][15][16][17]. It is reported to be more inert in
  • acidic reaction environments [18] and a better catalyst/support than other materials such as SiO2, TiO2, and Al2O3 [19]. Recently, we reported the usage of ZrO2 and Pt-doped ZrO2 nanoparticles for CO oxidation [20]. In this paper, the synthesized ZrO2 showed 100% CO conversion at a temperature which is
  • the lowest reported so far for bare ZrO2. Also, the addition of Pt resulted in an increase in oxygen vacancies (oxygen source for CO oxidation reaction) and hence an increase in the efficiency of CO conversion. Cu is known as a highly active metal catalyst for CO oxidation [21][22]. Cu supported on a
PDF
Album
Full Research Paper
Published 31 Jul 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • substrate. Finally, as it has been already stressed above, the polymerization reaction is initiated spontaneously and as such it requires no external initiator/catalyst. This unique feature makes the product uncontaminated with impurities influencing electrical conduction. As far as the termination of the
PDF
Album
Review
Published 28 Jul 2017

Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy

  • Isabella Tavernaro,
  • Christian Cavelius,
  • Henrike Peuschel and
  • Annette Kraegeloh

Beilstein J. Nanotechnol. 2017, 8, 1283–1296, doi:10.3762/bjnano.8.130

Graphical Abstract
  • methods. For this purpose different sizes of Atto647N-doped silica nanoparticles were synthesised following either the method of Stöber [36] or the C-dots method [42]. Both methods utilise ammonia as a catalyst, which has a large influence on the dimension and morphology of the obtained silica
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2017

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

  • Dario Zappa,
  • Angela Bertuna,
  • Elisabetta Comini,
  • Navpreet Kaur,
  • Nicola Poli,
  • Veronica Sberveglieri and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2017, 8, 1205–1217, doi:10.3762/bjnano.8.122

Graphical Abstract
  • nanostructures Evaporation–condensation technique: NiO, SnO2 and ZnO Evaporation–condensation allows one to obtain disordered mats of nanowires, covering the area of substrates with the catalyst. Figure 1 (top) shows the FE-SEM images of NiO nanowires at different magnifications, while Figure 1 (middle) and
  • , acting as a catalyst for the synthesis of nanowires. Figure 14 shows the basic mechanism of the evaporation–condensation process including three phases of material. At a certain temperature, the formation of a liquid alloy of metal and catalyst starts by absorbing vapors of the source material. As vapors
PDF
Album
Full Research Paper
Published 06 Jun 2017

Enhanced catalytic activity without the use of an external light source using microwave-synthesized CuO nanopetals

  • Govinda Lakhotiya,
  • Sonal Bajaj,
  • Arpan Kumar Nayak,
  • Debabrata Pradhan,
  • Pradip Tekade and
  • Abhimanyu Rana

Beilstein J. Nanotechnol. 2017, 8, 1167–1173, doi:10.3762/bjnano.8.118

Graphical Abstract
  • of these dyes. This is attributed to the role of H2O2 and the large specific surface area of the nanopetals. The amount of the catalyst (CuO nanopetals) and the hazardous H2O2 is minimized, and the reproducibility of the degradation of the dye with the same catalyst has been tested. The catalytic
  • illumination, yet continues to attract even more attention due to the use of advanced materials in the process [3][4][5]. The catalytic photo-degradation of dyes takes place with the excitation of a catalyst using UV–vis light, leading to the generation of electrons and holes which are further responsible for
  • out to investigate the effect of different concentrations of H2O2 for MB degradation in the absence of CuO nanopetals (catalyst) without any irradiation (UV/visible light). Figure 2c shows the UV–vis absorption spectra for different concentrations of H2O2 in MB solution, without catalyst, after one
PDF
Album
Supp Info
Full Research Paper
Published 30 May 2017

Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

  • Benjamin Baumgärtner,
  • Hendrik Möller,
  • Thomas Neumann and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2017, 8, 1145–1155, doi:10.3762/bjnano.8.116

Graphical Abstract
  • localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine
  • ]. Moreover, silica surfaces are suitable for adsorption of electron deficient organic molecules enabling an application of silica coated carbon fibers for adsorption issues and waste water treatment [34]. For catalytic applications, the high surface area of the silica shell could be used either as a catalyst
  • tetraethylenepentamine Besides embedding carbon fibers in a nanostructured silica shell, the new approach presented in this work is the localization of polyamines as a catalyst for silica precursor hydrolysis and condensation on the carbon fiber surface. The following polycondensation can be accomplished at neutral pH
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • for HER, in order to allow efficient charge transport through the electro-catalyst layers [21]. Both electronic and electro-catalytic applications of MoS2 share the key pre-requisite of a scalable and controllable fabrication technique for MoS2. Starting from early attempts with mechanical exfoliation
  • nanocrystalline structure and stability at increased temperatures (in particular for the 400 °C films) may make them interesting for possible applications as catalyst films in the field of (photo-)electrochemical water splitting. Initial electrochemical measurements suggest directions for future work towards
PDF
Album
Full Research Paper
Published 22 May 2017

ZnO nanoparticles sensitized by CuInZnxS2+x quantum dots as highly efficient solar light driven photocatalysts

  • Florian Donat,
  • Serge Corbel,
  • Halima Alem,
  • Steve Pontvianne,
  • Lavinia Balan,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 1080–1093, doi:10.3762/bjnano.8.110

Graphical Abstract
  • solution. A mechanism for the degradation pathways mediated by the ZnO/ZCIS catalyst is proposed. Interestingly, hydrogen peroxide, H2O2, and singlet molecular oxygen, 1O2, were found to play a key role in the oxidation of Orange II. Experimental Materials Indium acetate (In(OAc)3, 99.99%, Sigma), zinc
  • redispersed in toluene, and reprecipitated by adding ethanol. The centrifugation and precipitation procedure was repeated eight times for the purification of the ZCIS QDs. Preparation of the ZnO/ZCIS photocatalyst For the synthesis of the ZnO/ZCIS catalyst used in this work, 2.5 mg of dried ZCIS QDs were
  • heterojunction between ZnO nanoparticles and ZCIS QDs. Photocatalytic performance test A 100 mL Pyrex glass flask was used as a batch reactor. All experiments were performed at ambient temperature (20 ± 2 °C). In a typical photocatalytic experiment, 30 mg of the ZnO/ZCIS catalyst were added to 50 mL of an
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2017

CVD transfer-free graphene for sensing applications

  • Chiara Schiattarella,
  • Sten Vollebregt,
  • Tiziana Polichetti,
  • Brigida Alfano,
  • Ettore Massera,
  • Maria Lucia Miglietta,
  • Girolamo Di Francia and
  • Pasqualina Maria Sarro

Beilstein J. Nanotechnol. 2017, 8, 1015–1022, doi:10.3762/bjnano.8.102

Graphical Abstract
  • advantage of the absence of damage or contamination of the synthesized graphene, because there is no need for the transfer onto a substrate. Moreover, a proper pre-patterning of the Mo catalyst allows one to obtain graphene films with different shapes and dimensions. The sensing properties of the material
  • temperature at 1000 °C, the pressure at 25 mbar and using Ar/H2/CH4 as feedstock. At the end of the CVD growth, the Mo has been selectively etched away underneath graphene employing phosphoric acid. Due to anchoring at the sides of the patterned catalyst, the graphene layer sticks directly to the underlaying
PDF
Album
Full Research Paper
Published 08 May 2017

High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid

  • Shu Chin Lee,
  • Hendrik O. Lintang and
  • Leny Yuliati

Beilstein J. Nanotechnol. 2017, 8, 915–926, doi:10.3762/bjnano.8.93

Graphical Abstract
  • of the best modifiers, the use of a co-catalyst has been recognized to improve the photocatalytic performance of semiconductor photocatalysts as it promotes charge separation and suppresses photocorrosion of the semiconductor photocatalyst [3][4]. One of the potential co-catalyst modifiers is iron
  • prepared by photodeposition for the degradation of 2,4-D were discussed. In addition to identifying the charge transfer capability of the Fe2O3/TiO2 catalyst for improved photocatalytic activity, the role of the active species on the Fe2O3/TiO2 nanocomposites prepared by the photodeposition method was
  • /TiO2 heterojunction might promote better electron transfer which resulted in improved photocatalytic activity of the Fe2O3(0.5)/TiO2 (PD) material. Photoluminescence has been associated with electron–hole recombination of a photocatalyst [39]. In this study, the ability of an Fe2O3 co-catalyst to
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2017

Triptycene-terminated thiolate and selenolate monolayers on Au(111)

  • Jinxuan Liu,
  • Martin Kind,
  • Björn Schüpbach,
  • Daniel Käfer,
  • Stefanie Winkler,
  • Wenhua Zhang,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2017, 8, 892–905, doi:10.3762/bjnano.8.91

Graphical Abstract
  • could be achieved by reacting 9-triptycylmethylselenocyanate with sodium borohydride and subsequent oxidation of the product under ambient conditions (compare Supporting Information File 1). The diselenide obtained this way was reduced with elemental sodium using benzophenone as a catalyst, and reacted
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2017

Investigation of growth dynamics of carbon nanotubes

  • Marianna V. Kharlamova

Beilstein J. Nanotechnol. 2017, 8, 826–856, doi:10.3762/bjnano.8.85

Graphical Abstract
  • peculiarities of the growth mechanism of carbon nanotubes. The physical and chemical states of the catalyst during the nanotube growth are discussed. The chirality selective growth of nanotubes is described. The main part of the review is dedicated to the analysis and systematization of the reported results on
  • the investigation of growth dynamics of nanotubes. The studies on the revealing of the dependence of the growth rate of nanotubes on the synthesis parameters are reviewed. The correlation between the lifetime of catalyst and growth rate of nanotubes is discussed. The reports on the calculation of the
  • –solid–solid models, the tip- and base-growth models as well as the tangential and perpendicular growth modes. The physical and chemical states of the catalyst during the nanotube growth are considered. The chirality selective growth of nanotubes is described. The main part of the review is dedicated to
PDF
Album
Review
Published 11 Apr 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • tendency to agglomerate due to van der Waals interaction between the graphene layers, which inhibits its application is various fields – this drawback can be eliminated by hybridising graphene with NPs. Graphene is a zero band gap material and the main disadvantage of using graphene alone as a catalyst is
  • thermochromic transition at 257 °C and this material is used as a catalyst for industrial processes, gas sensors and in LIBs [105]. Various nanostructures of V2O5 such as nanotubes, nanowires, nanofibers, nanobelts, and nanorods have been prepared by sol–gel processes, hydrothermal processes [106
  • it a promising catalyst for fuel cells. Manganese oxide (MnO, Mn2O3, MnO2, Mn3O4, Mn2O7)–graphene hybrids Pyrolusite (MnO2), hausmanite (Mn3O4) and bixbyite (Mn2O3) are important minerals of manganese. These oxides have attracted great attention because of their environmental benignity and the high
PDF
Album
Review
Published 24 Mar 2017
Other Beilstein-Institut Open Science Activities