Search results

Search for "damping" in Full Text gives 188 result(s) in Beilstein Journal of Nanotechnology.

Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001)

  • Christian Held,
  • Thomas Seyller and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2012, 3, 179–185, doi:10.3762/bjnano.3.19

Graphical Abstract
  • to several complementary signals, such as topography, damping, and contact potential. The traditional presentation of such data sets in adjacent figures or in colour-coded pseudo-three-dimensional plots gives only a qualitative impression. We introduce two-dimensional histograms for the
PDF
Album
Full Research Paper
Published 29 Feb 2012

qPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution

  • Maximilian Schneiderbauer,
  • Daniel Wastl and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2012, 3, 174–178, doi:10.3762/bjnano.3.18

Graphical Abstract
  • sensitive to force gradients down to ≈ 5 × 10−7 Nm−1. All experiments presented here were performed under ambient conditions. For vibration isolation the microscope is mounted on a mechanical double damping stage [16]. We used the Nanonis SPM [17] control electronics and the Multipass configuration to
PDF
Album
Letter
Published 29 Feb 2012

Current-induced forces in mesoscopic systems: A scattering-matrix approach

  • Niels Bode,
  • Silvia Viola Kusminskiy,
  • Reinhold Egger and
  • Felix von Oppen

Beilstein J. Nanotechnol. 2012, 3, 144–162, doi:10.3762/bjnano.3.15

Graphical Abstract
  • freedom. These forces control the Langevin dynamics of the mechanical modes. Specifically, we derive expressions for the (typically nonconservative) mean force, for the (possibly negative) damping force, an effective “Lorentz” force that exists even for time-reversal-invariant systems, and the fluctuating
  • situations, the current-induced forces have been also studied within a scattering matrix approach in the context of quantum measurement back-action [32] (see also [33]), momentum-transfer statistics [34], and of magnetic systems to describe Gilbert damping [35]. Current-induced forces have been shown to be
  • expression which is evidently positive. Damping matrix: So far, we were able to express quantities in terms of the frozen S-matrix only. This is no longer the case for the first correction to the strictly adiabatic approximation, given by Equation 27 and Equation 28. We start here with the first of these
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2012

Mechanical characterization of carbon nanomembranes from self-assembled monolayers

  • Xianghui Zhang,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2011, 2, 826–833, doi:10.3762/bjnano.2.92

Graphical Abstract
  • damping capacity is thus calculated based on the ratio of energy dissipated to energy stored, and the corresponding values are ~3.1%, ~9.8% and ~17.6%, respectively. When a CNM was loaded at a lower stress (~163 MPa), the deflection remained constant over time. However, when it was loaded at a higher
PDF
Album
Video
Full Research Paper
Published 20 Dec 2011

Current-induced dynamics in carbon atomic contacts

  • Jing-Tao Lü,
  • Tue Gunst,
  • Per Hedegård and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2011, 2, 814–823, doi:10.3762/bjnano.2.90

Graphical Abstract
  • highly anharmonic regime, where the preceding eigenanalysis breaks down. One scenario is that the motion of the system will reach a limit-cycle determined by the detailed anharmonic potential and the interaction with the current [7]. In this regime the details of the damping due to the coupling with
  • bias voltage, Vb = 1 V. (b) N as a function of bias voltage, Vb, at fixed gate voltage Vg = 0.6 V. Note that it diverges at the critical point when the damping (1/Q) in Figure 4 goes to zero. (a) Definition of the system regions with different types of noise contributions. Leads (L,R) have a well
PDF
Album
Adds. & Corrs.
Full Research Paper
Published 16 Dec 2011

Nonconservative current-induced forces: A physical interpretation

  • Tchavdar N. Todorov,
  • Daniel Dundas,
  • Anthony T. Paxton and
  • Andrew P. Horsfield

Beilstein J. Nanotechnol. 2011, 2, 727–733, doi:10.3762/bjnano.2.79

Graphical Abstract
  • coupling these two directional phonon modes to electrons, we will see that the electron current pumps energy into one, while damping the other. The coupling between electrons and phonons is described by scattering theory. The unperturbed, phonon-free state of the current-carrying electrons is that of the
  • selection rules, setting the electronic temperature to zero, and ignoring variations in the electronic properties over energies in the region of or eV, we get where This is our final result. Equation 30 displays precisely the picture from [12]. Mode (+) experiences a damped driven motion. The damping
PDF
Album
Full Research Paper
Published 27 Oct 2011

Charge transfer through single molecule contacts: How reliable are rate descriptions?

  • Denis Kast,
  • L. Kecke and
  • J. Ankerhold

Beilstein J. Nanotechnol. 2011, 2, 416–426, doi:10.3762/bjnano.2.47

Graphical Abstract
  • equilibrated model are reduced. In Figure 8 data are shown for a ratio m0 = 4/5, where deviations occur at larger voltages, as observed in the previous figures. Obviously, due to the damping of the phonon mode the resonant steps are smeared out with increasing γ. However, the approximate model predicts this
PDF
Album
Full Research Paper
Published 03 Aug 2011

Single-pass Kelvin force microscopy and dC/dZ measurements in the intermittent contact: applications to polymer materials

  • Sergei Magonov and
  • John Alexander

Beilstein J. Nanotechnol. 2011, 2, 15–27, doi:10.3762/bjnano.2.2

Graphical Abstract
  • frequency, approaches a sample, the probe amplitude gradually decreases, Figure 2A. This effect is caused by a squeezed air damping and attractive probe-sample force interactions. The latter are enhanced by electrostatic force interactions between the conducting probe and the sample as its counter electrode
PDF
Album
Full Research Paper
Published 06 Jan 2011

Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

  • Thomas König,
  • Georg H. Simon,
  • Lars Heinke,
  • Leonid Lichtenstein and
  • Markus Heyde

Beilstein J. Nanotechnol. 2011, 2, 1–14, doi:10.3762/bjnano.2.1

Graphical Abstract
  • based on an active vibrational damping system. The background pressure in the UHV chamber is below 4 × 10−8 Pa. The microscope stage is cooled down with a liquid helium bath cryostat (Figure 2a). A so-called exchange gas canister is situated between microscope compartment and helium bath. The exchange
PDF
Album
Review
Published 03 Jan 2011

Tip-sample interactions on graphite studied using the wavelet transform

  • Giovanna Malegori and
  • Gabriele Ferrini

Beilstein J. Nanotechnol. 2010, 1, 172–181, doi:10.3762/bjnano.1.21

Graphical Abstract
  • of the cantilever may show a modification of the oscillation amplitude, frequency, phase or damping. The measurement of these cantilever parameters allows to gain information on the physical properties of the sample with (sub-)molecular resolution [4][5]. The dynamic behavior of a weakly interacting
  • cantilever oscillates in air or in a fluid close to a solid surface, due to a confinement effect, an increased damping is manifested as a decrease of the quality factor [14]. This effect is relevant for piezotube movements on the μm scale but not on the nm scale covered by the present measurements, where the
PDF
Album
Full Research Paper
Published 22 Dec 2010

Ultrafine metallic Fe nanoparticles: synthesis, structure and magnetism

  • Olivier Margeat,
  • Marc Respaud,
  • Catherine Amiens,
  • Pierre Lecante and
  • Bruno Chaudret

Beilstein J. Nanotechnol. 2010, 1, 108–118, doi:10.3762/bjnano.1.13

Graphical Abstract
  • higher energies for NPs as compared to the reference. Unfortunately, the EXAFS signal is strongly damped, which prevents further analysis of the higher energy part. Notwithstanding, the results (both shape and damping) are consistent with published data on amorphous iron [31], thus exhibiting metallic
PDF
Album
Full Research Paper
Published 03 Dec 2010

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • concentration is modified via the adjustment of the lattice parameter. The magnetodynamics of N homogeneously magnetized particles are governed by a set of ordinary differential equations [69][70] where Id is the 3N × 3N identity matrix, γ the gyromagnetic ratio, α the empirical damping coefficient and further
PDF
Album
Review
Published 22 Nov 2010

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • be explained by the formation of a thin Fe oxide overlayer damping the Pt intensity. More details can be found in [66], in which we quantified the degree of oxidation by XPS line fitting using linear combinations of reference spectra measured under identical experimental conditions. The Fe0 spectrum
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities