Search results

Search for "dynamic light scattering" in Full Text gives 205 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles – a fluorescence correlation spectroscopy study

  • Pauline Maffre,
  • Stefan Brandholt,
  • Karin Nienhaus,
  • Li Shang,
  • Wolfgang J. Parak and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2014, 5, 2036–2047, doi:10.3762/bjnano.5.212

Graphical Abstract
  • with other NPs. Results and Discussion QD characterization Hydrodynamic radii, RH, of the differently stabilized QDs, determined by FCS and dynamic light scattering (DLS), zeta potentials and fluorescence quantum yields (QY) are compiled in Table 1. The polymer-coated QDs were significantly larger than
PDF
Album
Full Research Paper
Published 07 Nov 2014
Graphical Abstract
  • ]. Corresponding in vitro investigations using polyallylamine (in form of polyallylamine hydrochloride, PAH) as a synthetic analogue [15] for native LCPAs revealed that phosphate is capable of inducing the self-assembly of PAH into large aggregates that could be detected by dynamic light scattering (DLS
PDF
Album
Full Research Paper
Published 06 Nov 2014

Data-adaptive image-denoising for detecting and quantifying nanoparticle entry in mucosal tissues through intravital 2-photon microscopy

  • Torsten Bölke,
  • Lisa Krapf,
  • Regina Orzekowsky-Schroeder,
  • Tobias Vossmeyer,
  • Jelena Dimitrijevic,
  • Horst Weller,
  • Anna Schüth,
  • Antje Klinger,
  • Gereon Hüttmann and
  • Andreas Gebert

Beilstein J. Nanotechnol. 2014, 5, 2016–2025, doi:10.3762/bjnano.5.210

Graphical Abstract
  • a hydrodynamic diameter of ca. 25 nm, as determined by dynamic light scattering (DLS). The spectral position of the excitonic emission band was located at ca. 585 nm (FWHM: ca. 32 nm), and the photoluminescence quantum yield was around 20–30%. Setup of the 2-photon microscope Intravital 2PM was done
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2014

The impact of the confinement of reactants on the metal distribution in bimetallic nanoparticles synthesized in reverse micelles

  • Concha Tojo,
  • Elena González and
  • Nuria Vila-Romeu

Beilstein J. Nanotechnol. 2014, 5, 1966–1979, doi:10.3762/bjnano.5.206

Graphical Abstract
  • % tergitol/5% water microemulsion (r = 4 nm as obtained by DLS (dynamic light scattering)). From this radius, and assuming a spherical shape (Vmicelle = 4/3π r3), the molar concentration of a micelle containing 64 atoms is calculated as: where NAv is Avogadro’s number. In order to study the influence of the
PDF
Album
Full Research Paper
Published 04 Nov 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • triangular particles as byproduct [29]. Figure 2A shows a typical SEM image of our silver nanoparticles. The diameter of the metallic core is about 70 nm. The hydrodynamic diameter as determined through dynamic light scattering is about 120 nm. The polydispersity index (PDI) was lower than 0.3 in all cases
PDF
Album
Review
Published 03 Nov 2014

Imaging the intracellular degradation of biodegradable polymer nanoparticles

  • Anne-Kathrin Barthel,
  • Martin Dass,
  • Melanie Dröge,
  • Jens-Michael Cramer,
  • Daniela Baumann,
  • Markus Urban,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2014, 5, 1905–1917, doi:10.3762/bjnano.5.201

Graphical Abstract
  • PLLA particles imaged in Figure 3A ranges from 20 to 175 nm. This is in good agreement with the dynamic light scattering (DLS) measurement, which yielded an average diameter of 121 nm. The majority of the magnetite nanocrystals are attached to the PLLA particles. Only very few detached magnetite
PDF
Album
Full Research Paper
Published 29 Oct 2014

The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions

  • Christoph Bantz,
  • Olga Koshkina,
  • Thomas Lang,
  • Hans-Joachim Galla,
  • C. James Kirkpatrick,
  • Roland H. Stauber and
  • Michael Maskos

Beilstein J. Nanotechnol. 2014, 5, 1774–1786, doi:10.3762/bjnano.5.188

Graphical Abstract
  • characterization to investigate the agglomeration behavior under physiological conditions. To combine the benefits of different characterization techniques and to compensate for their respective drawbacks, transmission electron microscopy, dynamic light scattering and asymmetric flow field-flow fractionation were
  • techniques, that is, transmission electron microscopy (TEM), multiangle dynamic light scattering (DLS) and asymmetric flow field-flow fractionation (AF-FFF). By combining the strengths of each of the individual techniques, their drawbacks are compensated for and a comprehensive characterization in
  • ][22][23]. However, as cryo-TEM investigations require an experienced operator and are both cost- and time-consuming, the method is far from becoming a standard technique. DLS: In dynamic light scattering (DLS), the fluctuations of the intensity of light scattered by a colloidal dispersion are observed
PDF
Album
Full Research Paper
Published 15 Oct 2014

Influence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells

  • Michal Babič,
  • Daniel Horák,
  • Lyubov L. Lukash,
  • Tetiana A. Ruban,
  • Yurii N. Kolomiets,
  • Svitlana P. Shpylova and
  • Oksana A. Grypych

Beilstein J. Nanotechnol. 2014, 5, 1732–1737, doi:10.3762/bjnano.5.183

Graphical Abstract
  • the modified particles were characterized by transmission electron microscopy and dynamic light scattering with regard to morphology, particle size and polydispersity. In vitro survival of human stem cells was then investigated by using the methyl thiazolyl tetrazolium (MTT) assay, which showed that D
  • . It should be pointed out that the particle size determined by TEM was smaller compared with the size measured by dynamic light scattering. The hydrodynamic size in water was in the range of 50–170 nm. The presence of the coating on the surface of the particles was confirmed by FT-IR spectroscopy [20
PDF
Album
Full Research Paper
Published 08 Oct 2014

In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics

  • Wolfgang G. Kreyling,
  • Stefanie Fertsch-Gapp,
  • Martin Schäffler,
  • Blair D. Johnston,
  • Nadine Haberl,
  • Christian Pfeiffer,
  • Jörg Diendorf,
  • Carsten Schleh,
  • Stephanie Hirn,
  • Manuela Semmler-Behnke,
  • Matthias Epple and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1699–1711, doi:10.3762/bjnano.5.180

Graphical Abstract
  • linear correlation of the added amount of NP and the amount of bound proteins was found and was described quantitatively by binding indices (BI, Figure 1). Hydrodynamic size distributions determined by dynamic light scattering (DLS) and zeta potentials were determined for all particles before and after
  • previous physicochemical characterizations [8], all AuNP used in these experiments were thoroughly characterized through TEM (size distribution), UV–vis spectroscopy (absorbance), dynamic light scattering (DLS, hydrodynamic diameter), differential centrifugal sedimentation (DCS) and atomic force microscopy
  • hydrodynamic diameter distribution was verified by dynamic light scattering (DLS) measurements prior to intratracheal instillation in groups of four healthy, adult, female Wistar-Kyoto rats (8–10 weeks aged, body weight 180–200 g). Doses of freshly prepared AgNP were 50 µg and 250 µg per rat in 80 µL
PDF
Album
Review
Published 02 Oct 2014

Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

  • Dagmar A. Kuhn,
  • Dimitri Vanhecke,
  • Benjamin Michen,
  • Fabian Blank,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1625–1636, doi:10.3762/bjnano.5.174

Graphical Abstract
  • dynamic light scattering (DLS) revealed an average hydrodynamic radius of approximately 581 nm for the microparticles and 28 nm for the nanoparticles. Transmission electron microscopy (TEM) revealed a core radius of 520 nm for the microparticles and 30.9 nm for the NPs. The latter, however, exhibited a
  • as 40 nm hydrodynamic diameter) polystyrene (PS) particles (Molecular Probes, Luzern, Switzerland) were used for the study. The particles were characterized in terms of size by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic radius was acquired by DLS (3D
  • by dynamic light scattering, zeta potential and transmission electron microscopy in water and unsupplemented cell culture medium. Transmission electron microscopy images of (B) 1 µm particles, (C) NPs, and (D) a mixture of 1 µm particles and NPs. LSM images demonstrate the presence of the different
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2014

Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy

  • Adriano A. Torrano and
  • Christoph Bräuchle

Beilstein J. Nanotechnol. 2014, 5, 1616–1624, doi:10.3762/bjnano.5.173

Graphical Abstract
  • by transmission electron microscopy (TEM). In addition, the hydrodynamic diameter of the particles over time was determined by dynamic light scattering (DLS) measurements in water and in cell medium. Depending on the properties of the nanoparticles, they may agglomerate in a given cell medium [40
  • light scattering) were measured in ultrapure water and in cell medium (see section ‘Cell culture’ for details) with a Zetasizer Nano (Malvern Instruments, UK). In order to break down agglomerates, the resulting solution was vortexed for 10 s, treated in an ultrasonic bath for 10 min and vortexed again
  • diluted with EtOH or MeOH and applied onto a carbon-coated copper grid (Plano, Formvar coal-film on 200 mesh-net). The sizes of the nanoparticles were then determined from TEM images through digital image analysis with the ImageJ software [26]. Zeta potentials and hydrodynamic diameter (through dynamic
PDF
Album
Full Research Paper
Published 23 Sep 2014

Silica nanoparticles are less toxic to human lung cells when deposited at the air–liquid interface compared to conventional submerged exposure

  • Alicja Panas,
  • Andreas Comouth,
  • Harald Saathoff,
  • Thomas Leisner,
  • Marco Al-Rawi,
  • Michael Simon,
  • Gunnar Seemann,
  • Olaf Dössel,
  • Sonja Mülhopt,
  • Hanns-Rudolf Paur,
  • Susanne Fritsch-Decker,
  • Carsten Weiss and
  • Silvia Diabaté

Beilstein J. Nanotechnol. 2014, 5, 1590–1602, doi:10.3762/bjnano.5.171

Graphical Abstract
  • field. Supporting Information Supporting Information contains 1) data obtained by dynamic light scattering of the particles suspensions 2) data on the deposited mass dose for Aerosil200 particles after ALI exposure and 3) deposition kinetics of the mass doses for Aerosil200 and SiO2-50 nm particles
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2014

In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?

  • Moritz Nazarenus,
  • Qian Zhang,
  • Mahmoud G. Soliman,
  • Pablo del Pino,
  • Beatriz Pelaz,
  • Susana Carregal-Romero,
  • Joanna Rejman,
  • Barbara Rothen-Rutishauser,
  • Martin J. D. Clift,
  • Reinhard Zellner,
  • G. Ulrich Nienhaus,
  • James B. Delehanty,
  • Igor L. Medintz and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1477–1490, doi:10.3762/bjnano.5.161

Graphical Abstract
  • determined with TEM. There are several techniques for determining the hydrodynamic diameters of NPs [108], of which dynamic light scattering (DLS) might be the most common approach. All techniques have their limitations, and it is always helpful to know the measuring principle they are based on. DLS, for
PDF
Album
Review
Published 09 Sep 2014

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

  • Markus Heine,
  • Alexander Bartelt,
  • Oliver T. Bruns,
  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Ludger Scheja,
  • Christian Waurisch,
  • Alexander Eychmüller,
  • Rudolph Reimer,
  • Horst Weller,
  • Peter Nielsen and
  • Joerg Heeren

Beilstein J. Nanotechnol. 2014, 5, 1432–1440, doi:10.3762/bjnano.5.155

Graphical Abstract
  • through a 0.45, 0.2, and 0.1 μm Millipore filter. Based on dynamic light scattering (DLS) measurements, the size of polymer-coated nanocrystals is 25 nm. These polymer-coated nanoparticles are negatively charged due to the formation of carboxyl groups at the surface. Labelling of lipid micelles with
PDF
Album
Full Research Paper
Published 02 Sep 2014

The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles

  • Dominic Docter,
  • Christoph Bantz,
  • Dana Westmeier,
  • Hajo J. Galla,
  • Qiangbin Wang,
  • James C. Kirkpatrick,
  • Peter Nielsen,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2014, 5, 1380–1392, doi:10.3762/bjnano.5.151

Graphical Abstract
  • % fetal calf serum (FCS). According to dynamic light scattering (DLS) and zeta potential measurements, all ASP display the expected hydrodynamic diameter and carry negative surface charges in water, as reflected by their negative zeta potential (Table 1). As the highest absolute values for zeta potential
PDF
Album
Full Research Paper
Published 27 Aug 2014

Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches

  • Fabian Herzog,
  • Kateryna Loza,
  • Sandor Balog,
  • Martin J. D. Clift,
  • Matthias Epple,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1357–1370, doi:10.3762/bjnano.5.149

Graphical Abstract
  • in order to reveal a greater insight into the effect of Ag NP toxicity. Results Particle characterisation PVP-coated Ag NPs were characterised by scanning electron microscopy (SEM) and dynamic light scattering (DLS). Figure 1A shows a representative SEM image of particles deposited on a silicon wafer
  • NP stock solutions (in water) were analysed by dynamic light scattering using a Malvern Zetasizer Nano ZS. The polydispersity index (PDI) was below 0.3 in all cases, indicating a good dispersion of the particles and only little agglomeration. The concentration of silver was determined by atomic
  • Dunnett’s post-hoc test was performed. Values were considered significantly different with p < 0.05 (*), p < 0.01 (**). Scanning electron microscopic image (A) of Ag NPs deposited on a silicon wafer. The particle size distribution (B) was measured by dynamic light scattering and showed an average
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2014

An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals

  • Parul Chawla,
  • Son Singh and
  • Shailesh Narain Sharma

Beilstein J. Nanotechnol. 2014, 5, 1235–1244, doi:10.3762/bjnano.5.137

Graphical Abstract
  • obtained for P3HT:CZTSe nanocomposites. This implies an utmost efficiency of CZTSe quenchers in intercepting the P3HT fluorophores and rendering them non-fluoroscent compared to the other ones, which results in a better charge transfer capability across P3HT:CZTSe nanocomposites. Dynamic light scattering
  • system consisting of a two-stage monochromator, a photomultiplier tube with a lock-in amplifier for PL detection, and an Ar+ ion laser operating at 488 nm and 5 mW (corresponding to 0.125 W·cm−2) for excitation. Dynamic light scattering measurements were carried out by using a Malvern Instrument Nano-S
PDF
Album
Full Research Paper
Published 08 Aug 2014

Optimizing the synthesis of CdS/ZnS core/shell semiconductor nanocrystals for bioimaging applications

  • Li-wei Liu,
  • Si-yi Hu,
  • Ying Pan,
  • Jia-qi Zhang,
  • Yue-shu Feng and
  • Xi-he Zhang

Beilstein J. Nanotechnol. 2014, 5, 919–926, doi:10.3762/bjnano.5.105

Graphical Abstract
  • producing water-dispersible nanocrystals that should easily be applicable in biology. Effect of pH on the hydrodynamic diameter of the QDs The dynamic light scattering (DLS) technique was used to measure the hydrodynamic diameter profile of the micelle-encapsulated nanocrystals. For the purposes of the DLS
PDF
Album
Full Research Paper
Published 27 Jun 2014

Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

  • Tatiana Borisova,
  • Natalia Krisanova,
  • Arsenii Borуsov,
  • Roman Sivko,
  • Ludmila Ostapchenko,
  • Michal Babic and
  • Daniel Horak

Beilstein J. Nanotechnol. 2014, 5, 778–788, doi:10.3762/bjnano.5.90

Graphical Abstract
  • of particles with the diameter Di) documents a moderately broad particle size distribution (Table 1). The obtained iron oxide nanoparticle colloids were also investigated by dynamic light scattering (DLS). The hydrodynamic diameter (Dh) of the nanoparticles calculated from DLS was about 10 times
  • 200 CX transmission electron microscope (TEM). The size was calculated by using the Atlas program (Tescan, Digital Microscopy Imaging, Brno, Czech Republic). The hydrodynamic diameter Dh (z-average) and polydispersity as a measure of the particle size distribution were determined by dynamic light
  • scattering (DLS) with an Autosizer Lo-C (Malvern Instruments, UK). The modification of the nanoparticle surface with D-mannose was analyzed using a Nicolet Impact 400 Fourier transformation infrared (FTIR) spectrometer in water-purged surrounding with a DTGS detector. The spectra were measured by ATR
PDF
Album
Full Research Paper
Published 04 Jun 2014

Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development

  • Ulrike Taylor,
  • Wiebke Garrels,
  • Annette Barchanski,
  • Svea Peterson,
  • Laszlo Sajti,
  • Andrea Lucas-Hahn,
  • Lisa Gamrad,
  • Ulrich Baulain,
  • Sabine Klein,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2014, 5, 677–688, doi:10.3762/bjnano.5.80

Graphical Abstract
  • ablation with an accuracy of 1 µg. Zeta potential measurements for the determination of the stability as well as the detection of the hydrodynamic diameter and the polydispersity index of the colloids were performed by dynamic light scattering with the Zetasizer ZS (Malvern Instruments Ltd, Worcestershire
PDF
Album
Full Research Paper
Published 21 May 2014

Cyclodextrin-poly(ε-caprolactone) based nanoparticles able to complex phenolphthalein and adamantyl carboxylate

  • Daniela Ailincai and
  • Helmut Ritter

Beilstein J. Nanotechnol. 2014, 5, 651–657, doi:10.3762/bjnano.5.76

Graphical Abstract
  • HEMAbio 100 (MZ-Analysentechnik), pump, degasser and autosampler (Agilent 1200, Agilent technologies). The eluent was ultrapure water at a flow rate of 1 mL/min. The molecular weight was calculated with Astra5 software from static-light-scattering data by using the Zimm model. Dynamic light scattering
PDF
Album
Full Research Paper
Published 16 May 2014

In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers

  • Tianxun Gong,
  • Douglas Goh,
  • Malini Olivo and
  • Ken-Tye Yong

Beilstein J. Nanotechnol. 2014, 5, 546–553, doi:10.3762/bjnano.5.64

Graphical Abstract
  • –PPO–PEO) molecules. The morphology of functionalized gold nanorods was characterized by UV–visible absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. Solution phase synthesis of gold nanorods has remained the method of choice for obtaining varying shapes and
  • , transmission electron microscopy (TEM), cell viability assay, dynamic light scattering (DLS), and dark-field imaging microscopy. The non-specific uptake of these AuNRs by cells was also studied under dark-field microscopy. Our work demonstrates that the coating of AuNRs surfaces with PEG-SH or PEO–PPO–PEO
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2014

One pot synthesis of silver nanoparticles using a cyclodextrin containing polymer as reductant and stabilizer

  • Arkadius Maciollek and
  • Helmut Ritter

Beilstein J. Nanotechnol. 2014, 5, 380–385, doi:10.3762/bjnano.5.44

Graphical Abstract
  • at room temperature. The results of dynamic light scattering analysis and transmission electron microscopy show adjustable particle sizes from 30–100 nm, due to variation of silver nitrate concentration, the polymeric reducing and stabilisation agent concentration or reaction time. The spherical
  • size effectively (Table 1). Dynamic light scattering experiments were carried out to determine the particle size and the size distribution as function of molar ratio. Hydrodynamic diameters dn up to 110 nm prove the formation of silver nanoparticles. Analog to the TEM experiments an increase of the
  • –visible spectrophotometer equipped with a Thermo Scientific CD10 Heating Circulator bath. Fluorescence spectra were recorded on a Perkin Elmer LS55 luminescence spectrometer. Zeta Potential and dynamic light scattering (DLS) experiments were carried out with a Malvern Zetasizer Nano; ZS ZEN 3600 at a
PDF
Album
Full Research Paper
Published 31 Mar 2014

Morphological characterization of fullerene–androsterone conjugates

  • Alberto Ruiz,
  • Margarita Suárez,
  • Nazario Martin,
  • Fernando Albericio and
  • Hortensia Rodríguez

Beilstein J. Nanotechnol. 2014, 5, 374–379, doi:10.3762/bjnano.5.43

Graphical Abstract
  • , respectively. The morphology and particle size in aqueous solution were determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS), with satisfactory agreement between both techniques. In general, these fullerene derivatives are shown to organize into spherical nano-scale
  • structures with diameters in the ranges of 10–20 and 30–50 nm, respectively. Keywords: androsterone; dynamic light scattering; fullerene; transmission electron microscopy; Introduction Since the discovery of [60]fullerene [1], the efforts of the scientific community have been focused on the preparation of
  • report on the morphological characterization of four fullerene–androsterone conjugates in water. The morphology and particle size of the C60–androsterone hybrids in aqueous solution were determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Results and Discussion The
PDF
Album
Supp Info
Full Research Paper
Published 28 Mar 2014

Near-infrared dye loaded polymeric nanoparticles for cancer imaging and therapy and cellular response after laser-induced heating

  • Tingjun Lei,
  • Alicia Fernandez-Fernandez,
  • Romila Manchanda,
  • Yen-Chih Huang and
  • Anthony J. McGoron

Beilstein J. Nanotechnol. 2014, 5, 313–322, doi:10.3762/bjnano.5.35

Graphical Abstract
  • diameters of void PGMD NPs and IR820-PGMD NPs (see dynamic light scattering (DLS) measurements in Figure S1, Supporting Information File 1) are 90 ± 18.2 nm, and 108 ± 7.4 nm (mean ± SD) respectively. The shape and size of IR820-PGMD NPs were also confirmed with scanning electron microscopy (SEM) imaging
PDF
Album
Supp Info
Full Research Paper
Published 18 Mar 2014
Other Beilstein-Institut Open Science Activities