Search results

Search for "electrode" in Full Text gives 600 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • ][27] have been promoted in terms of the “atomic switch” by K. Terabe et al. utilizing Ag2S as the ionic conductor medium [28]. The roles of the matrix, the electrode, and their interfaces in the filament formation have been extensively investigated covering a broad range of materials systems [4
  • memristor was determined numerically as Vbias = Vdrive − I·RS. As a polarity convention, a positive bias corresponds to a higher potential applied on the planar Ag electrode with respect to the PtIr tip. A representative I(V) trace acquired within 400 ms is exemplified in Figure 1a. Bipolar resistive
PDF
Album
Full Research Paper
Published 08 Jan 2020

Simple synthesis of nanosheets of rGO and nitrogenated rGO

  • Pallellappa Chithaiah,
  • Madhan Mohan Raju,
  • Giridhar U. Kulkarni and
  • C. N. R. Rao

Beilstein J. Nanotechnol. 2020, 11, 68–75, doi:10.3762/bjnano.11.7

Graphical Abstract
  • voltammetry and CD experiments with three-electrode system using 1 M H2SO4 as electrolyte (Figure 8). CV curves of rGO and H-rGO at different scan rates from 5 to 200 mV·s−1 vs Hg/Hg2SO4 are shown in Figure 8a and Figure 8b, respectively. These curves show increase in current density with decreasing scan rate
  • , respectively. We have checked the rate capability of the working electrode at different scan rates of 10, 20, 40, 60, 80, 100, and 200 mV·s−1 and observed that the specific capacitance values were 96, 64, 43, 35, 30, 27 and 19 F·g−1, respectively (Figure 8c). For comparison, the charge–discharge (CD) curves
  • stability (Figure 9). We compared our result with other materials reported recently (Table 1). For conductivity measurements, the H-rGO sample was dispersed in ethanol and drop-cast on a gold gap electrode. The average resistance measured using a Keithley source meter is ca. 4 MΩ. The corresponding
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • measurements under controlled electrolyte transport, employing a rotating ring disk electrode (RRDE) setup (section 2 in “Results and Discussion”). We will compare the ORR performance with those of the previously reported TiON@NCS and TaON@NCS composite materials. A more detailed account of the electrochemical
  • resolution of 5 cm−1 (50 µm slit-like pinhole) with an exposure time of 5 s (10 accumulations). Electrode preparation and electrochemical measurements The catalyst thin-film electrode (catalyst loading of 0.285 mg·cm−2 for Pt-free catalyst, 140 μg·cm−2 loading (Pt loading: 28 μg·cm−2) for the 20 wt % Pt/C E
  • a N2 stream. With these loadings we could form homogeneous, thin and stable catalyst layers on the electrode. The resulting film was covered with the same volume of a 1 wt % aqueous Nafion solution and dried again to ensure the mechanical stability of the catalyst layer on the glassy carbon without
PDF
Album
Full Research Paper
Published 02 Jan 2020

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • ) electrolyte into/from a Sb-modified electrode shows a positive shift (400 mV) of the onset potential of Mg deposition compared to that of a bare Au electrode. From the charge of the Mg deposition, we find that the ratio of Mg to Sb is 1:1, which is somewhat less than expected for the Mg3Sb2 alloy. Keywords
  • electrodeposited Bi0.88Sb0.12 alloy by Arthur et al. [7]. However, the capacity declines to 215 mAh/g after 100 cycles with an electrolyte mixture of ethylmagnesium chloride, diethylaluminum chloride and anhydrous THF. A detailed, fundamental study of magnesium deposition/dissolution at a Sb-modified Au electrode
  • deposition on a Au electrode was carried out by Jung [8], who found that antimony deposition on Au(100) and Au(111) in acid electrolyte undergoes two electrochemical processes involving an irreversible adsorption and underpotential deposition. This irreversible adsorption was attributed to oxygenous Sb(III
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • a top electrode. We were able to determine a relationship between island size and electrical conductivity, and from this dependence, we could obtain information on the lateral charge transport and charge carrier mobility within the thin OSC layers. Our study demonstrates that AFM nanografting of
  • determination of apparent heights of islands from STM data is somewhat indirect, the conductivities of the patterned areas were determined directly by means of highly sensitive current measurements, where the conductive tip of the AFM is used as a top electrode. This setup allows determining the topography and
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • particular case, however, the spacer effect also occurs in the EQE spectra at wavelengths above 600 nm, for which the light reaches deepest into Sb2S3 and closer to the back electrode. Hence, more sophisticated analyses might be appropriate for the complete depiction of the impact of Sb2S3 thickness on
  • (99.5% v/v), then dried at 50 °C for 10 min in air, and further dried in vacuum (≤4 × 10−6 torr) for 5 min. The solar cells were completed by depositing the Au counter electrode by thermal evaporation in vacuum (<2 × 10−4 torr). The cells with areas of 1.7 mm2 and 7.1 mm2 were prepared with the use of
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents

  • Chen Du,
  • Shuo Wang,
  • Xu Miao,
  • Wenhai Sun,
  • Yu Zhu,
  • Chengyan Wang and
  • Ruixin Ma

Beilstein J. Nanotechnol. 2019, 10, 2374–2382, doi:10.3762/bjnano.10.228

Graphical Abstract
  • cell (iPSC), Pengcheng Zhou et al. managed to achieve a signifanct boost in efficiency [30]. The photovoltaic properties of inverted polymer solar cells using a PVP-modified indium tin oxide (ITO) layer as the electron-collecting electrode were reported on by J. W. Shim and co-workers [31]. In this
  • chlorobenzene) at 4500 rpm for 20 s. The above preparation process was carried out under ambient conditions. Finally, the devices were completed by using thermal evaporation and deposited on an Au electrode. Characterization Field-emission scanning electron microscopy (FESEM) images were obtained with a ZEISS
  • cm2. All samples were measured in air (25 °C). Results and Discussion Figure 1 illustrates how the PSCs were prepared. The PSCs of this study comprises a SnO2 electron transfer layer (ETL), a MAPbI3 coating, a Spiro-OMeTAD HTL as well as a gold electrode. In a first step, the perovskite layer was
PDF
Album
Full Research Paper
Published 05 Dec 2019

Multiwalled carbon nanotube based aromatic volatile organic compound sensor: sensitivity enhancement through 1-hexadecanethiol functionalisation

  • Nadra Bohli,
  • Meryem Belkilani,
  • Juan Casanova-Chafer,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2019, 10, 2364–2373, doi:10.3762/bjnano.10.227

Graphical Abstract
  • of trace concentrations of toluene in exhaled breath is associated with lung cancer and can therefore be considered as a biomarker for this pathology [2][3][4]. A gas sensor is generally composed of an active sensing film or material deposited on an electrode. The sensing performance is strongly
  • decoration of MWCNTs Prior to their deposition on the interdigitated electrode surface, the MWCNTs were treated by oxygen plasma to create oxygen vacancies on the walls of the CNTs in order to enhance their surface reactivity [14][15]. The detailed description of the experimental steps undertaken is
  • presented in Supporting Information File 1 [16][17][18]. The MWCNTs were then dispersed in dimethylformamide (DMF) (0.1 mg MWCNTs in 1 mL of DMF) using an ultrasonic bath for 20 minutes at room temperature. Then, they were air-brush deposited over the platinum interdigitated electrode area of alumina
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2019

Adsorption and desorption of self-assembled L-cysteine monolayers on nanoporous gold monitored by in situ resistometry

  • Elisabeth Hengge,
  • Eva-Maria Steyskal,
  • Rupert Bachler,
  • Alexander Dennig,
  • Bernd Nidetzky and
  • Roland Würschum

Beilstein J. Nanotechnol. 2019, 10, 2275–2279, doi:10.3762/bjnano.10.219

Graphical Abstract
  • an Autolab PGSTAT204 potentiostat, the others for four-point resistance measurements with a Keithley 2400 Source Meter. For a more detailed description of the resistometry setup, the reader is referred to our previous work [9]. An electrochemical cell was set up in three-electrode geometry, using a
  • commercial Ag/AgCl reference electrode (saturated KCl with a 3 M KNO3 salt bridge), relative to which all potentials will be stated in the following. Whenever the cell electrolyte was changed, the setup was immersed in distilled water for several hours for rinsing. Dealloying was performed in 0.1 M HClO4
  • with a Pt-wire counter electrode under chronoamperometric conditions at UAg/AgCl = 1100 mV until the current had fallen below 50 μA. For all following procedures, a carbon fabric served as the counter electrode. After dealloying, the sample was cleaned from the primary oxide [10] by cyclic voltammetry
PDF
Album
Letter
Published 18 Nov 2019

Four self-made free surface electrospinning devices for high-throughput preparation of high-quality nanofibers

  • Yue Fang and
  • Lan Xu

Beilstein J. Nanotechnol. 2019, 10, 2261–2274, doi:10.3762/bjnano.10.218

Graphical Abstract
  • high-throughput tipless electrospinning via a circular cylindrical electrode. Shin et al. [19] used a multiple vertical rod setup for needleless ES to fabricate submicrometer polymer fibers. Moon et al. developed a syringeless electrospinning technique with a helically probed rotating cylinder for
PDF
Album
Full Research Paper
Published 15 Nov 2019

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • composite with both large surface area and high porosity for the use as advanced electrode material in lithium–sulfur batteries. Double modified defect-rich MoS2 nanosheets are successfully prepared by introducing reduced graphene oxide (rGO) and amorphous carbon. The conductibility of the cathodes can be
  • specific capacity of 572 mAh·g−1 at 0.2C after 550 cycles, and 551 mAh·g−1 even at 2C, much better than that of MoS2-S nanosheets (249 mAh·g−1 and 149 mAh·g−1) and C-MoS2/rGO-S composites (334 mAh·g−1 and 382 mAh·g−1). Our intended electrode design protocol and annealing process may pave the way for the
  • . However, the capacity of carbon and sulfur composite cathodes generally fades rapidly during long-term cycling, because the carbon materials can provide only inferior physical adsorption to the polar Li2Sn [16]. Once Li2Sn is solvated, it dissolves easily in the electrolyte from the electrode surface and
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • electrodes in dye-sensitized solar cells (DSSCs) [9][12][13], as electron acceptors or donors in inorganic or hybrid solar cells [10][14][15][16][17] and as second electron acceptors in organic photovoltaic cells (OPVs) [18]. An iron pyrite thin film used as a counter electrode showed a conversion efficiency
  • (8%) similar to that of a Pt counter electrode in DSSC [9], which could be due to the high catalytic activity of pyrite. When the film is doped with ethanedithiol (EDT), the conversion efficiency is increased by about 20% as compared to the pure pyrite thin film [12]. Also, FeS2 NPs of 30 nm size
  • an alternative top electrode, which we attached by free vacuum deposition. The FM is composed of 32.5% Bi, 51% In and 16.5% Sn and is characterized by a melting point of around 62 °C. It was deposited on the active layer/PFN by drop casting (or doctor blade) at low temperature (≈95 °C) and
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • environmental friendliness [11][12][13][14]. The electrode materials of conventional lithium-ion batteries (LIBs) are generally based on transition metal oxides containing lithium mixed evenly with conductive agents and adhesives. The electrode materials are then coated on metal current collectors [15][16][17
  • . Researchers have found that two-dimensional (2D) or 3D free-standing electrode materials [18][19][20][21] can significantly improve the electrochemical performance while also offering light weight and superior mechanical properties [22][23]. LiFePO4 and Li4Ti5O12 have been widely developed and applied in LIBs
  • electrodes [18][21][28]. In recent years, an increasing number of reports on the preparation of fiber electrode materials by electrospinning were published [18][21][28][34][35]. In this paper, we describe the preparation of LiFePO4 and Li4Ti5O12 nanofiber membrane materials by a modified electrospinning
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • Engineering, Zhejiang University of Technology, Hangzhou, China 10.3762/bjnano.10.213 Abstract Transition metal compounds such as nickel cobalt sulfides (Ni–Co–S) are promising electrode materials for energy storage devices such as supercapacitors owing to their high electrochemical performance and good
  • describes the synthesis of ultrathin (around 10 nm) flower-like Ni1−xCoxS2 nanoflakes by using templated NiCo oxides. The as-prepared Ni1−xCoxS2 material retained the morphology of the initial NiCo oxide material and exhibited a much improved electrochemical performance. The Ni1−xCoxS2 electrode material
  • energy density of 67.5 Wh·kg−1) and excellent cycling stability. This approach can be a low-cost way to mass-produce high-performance electrode materials for supercapacitors. Keywords: electrode materials; high energy density; in situ phase transformation; NiCo sulfide; supercapacitors; ultrathin
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

Use of data processing for rapid detection of the prostate-specific antigen biomarker using immunomagnetic sandwich-type sensors

  • Camila A. Proença,
  • Tayane A. Freitas,
  • Thaísa A. Baldo,
  • Elsa M. Materón,
  • Flávio M. Shimizu,
  • Gabriella R. Ferreira,
  • Frederico L. F. Soares,
  • Ronaldo C. Faria and
  • Osvaldo N. Oliveira Jr.

Beilstein J. Nanotechnol. 2019, 10, 2171–2181, doi:10.3762/bjnano.10.210

Graphical Abstract
  • using constant-potential amperometry at a working electrode potential of −200 mV vs pseudo-reference Ag/AgCl. The mixed solution containing H2O2 (1 µmol·L−1) and hydroquinone (HQ, 10 µmol·L−1) was injected into the electrochemical cell, and the signal was monitored. The HRP-Fe(III) immobilized on the
  • MNPs was oxidized by H2O2 to form an intermediate (Fe4+=O) and a porphyrin π-cation radical. The oxidized HRP was reduced by the mediator hydroquinone (HQ) forming benzoquinone (BQ), which was electrochemically reduced by accepting one electron from the electrode, with the enzyme returning to its
  • immobilized on the electrode surface. Also, the monoclonal antibody provides high specificity to a single epitope, which is reflected in a low cross-reactivity. A comparison of various sandwich-type immunosensors and immunoassays for detection of PSA in the literature is presented in Table 1. Repeatability is
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2019

Liquid crystal tunable claddings for polymer integrated optical waveguides

  • José M. Otón,
  • Manuel Caño-García,
  • Fernando Gordo,
  • Eva Otón,
  • Morten A. Geday and
  • Xabier Quintana

Beilstein J. Nanotechnol. 2019, 10, 2163–2170, doi:10.3762/bjnano.10.209

Graphical Abstract
  • constructed. The cell consists of a LC (Merck MDA-98-1602, no = 1.52, ne = 1.78) sandwiched between the substrate containing the waveguides and an ITO-coated glass plate to provide a conductive layer for applying electric signals (Figure 8). The substrate Si wafer was employed as counter electrode. Si was
PDF
Album
Full Research Paper
Published 05 Nov 2019

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • and fuel cells [5]. Meanwhile, the thermoelectric application of TMO-based materials has been explored and their poor efficiency is still the major difficulty [6]. Among the TMOs, layered molybdenum trioxide (MoO3) has attracted attention as a potential electrode material in electrochemical products
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • nanogenerator) and single-electrode mode (wind vane triboelectric nanogenerator) [100]. The former mode can be used for analysis of wind speed with less energy consumption and the latter one provides an accurate measurement for the wind direction. The wireless monitoring of these responses could contribute to
PDF
Album
Review
Published 16 Oct 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • directly, rather it is deduced from the electrophoretic mobility of the charged NPs under an applied electric field. The electrophoretic mobility toward the positive or the negative electrode determines the zeta potential values as negative or positive. The zeta potential values for Au-CPMV particles of
PDF
Album
Full Research Paper
Published 07 Oct 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • carbon cloth (0.2 m2·g−1). The pore size distribution (Figure S4b, Supporting Information File 1) shows that most pores have a size of 40–50 nm. The high surface area, and the mesopores can help the ion diffusion between electrode and electrolyte. The morphologies of CNT@Fe2O3 were further examined by
  • 530.13 eV, corresponding to C–O, Fe–O–C, and Fe–O, respectively [30]. The XPS results strongly support the XRD and Raman results and confirm Fe2O3 on the CC-CNT. A three-electrode system was used to examine the electrochemical characteristics of the CC-CNT@Fe2O3 with Pt foil as a counter electrode, SCE
  • as a reference electrode, CC-CNT@Fe2O3 as the binder-free working electrode and 2 M KOH as the electrolyte. Figure 4a shows cyclic voltammetry (CV) curves of the CC-CNT@Fe2O3 electrode at scan rates of 2, 5, 10, 20, 50 and 100 mV·s−1, from which visible redox peaks can be seen. The reduction peak at
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

Prestress-loading effect on the current–voltage characteristics of a piezoelectric p–n junction together with the corresponding mechanical tuning laws

  • Wanli Yang,
  • Shuaiqi Fan,
  • Yuxing Liang and
  • Yuantai Hu

Beilstein J. Nanotechnol. 2019, 10, 1833–1843, doi:10.3762/bjnano.10.178

Graphical Abstract
  • energy. Liang et al. [23] further studied the nonlinear effect of carrier drift on the performance of a ZnO nanogenerator following [21], and put forward a proper electrode configuration for the improvement of the nanogenerator performance. More recently, both time-harmonic and transient behavior have
PDF
Album
Full Research Paper
Published 06 Sep 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • and azimuth-dependent reflectance difference microscopy (ADRDM), we firstly identified the 1T’-phase WTe2 to have an optical anisotropic crystal structure. Secondly, a 12-electrode-structure was designed for the evaluation the electrical anisotropy of 1T’-WTe2, and the results demonstrated up to 103
  • contact resistance: 1) samples with uniform thickness were selected for device fabrication under the microscope; 2) a constant angular velocity (10 rpm) was kept when we evaporated electrodes onto the samples. To perform the angle-resolved DC conductance measurements, a fixed electrode was chosen and
  • defined as the reference electrode (RE), and a constant bias voltage (50 mV) was alternately applied between the other 11 test electrodes (TEs) and the reference electrode. In addition, each pair of diagonally positioned electrodes were separated by 10 μm at 180° apart and the transfer characteristic
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • and Li2S2 at the electrode/electrolyte interface, shortening the service life and rendering poor coulombic efficiency, and (iii) large volumetric changes during charge/discharge, destroying the conductive network of the electrode and causing capacity decay [11][12][13][14][15]. To overcome these
  • served as a reference electrode, TiO2/GO hybrid and GO membranes as separators, 1.0 M/0.1 M LiTFSI/LiNO3 in DOL and DME (1:1 v/v) as an electrolyte and sulfur as a cathode. The charge–discharge measurements were carried out in the voltage range of 1.5–3 V (vs Li/Li+) by using a multichannel Neware
PDF
Album
Full Research Paper
Published 19 Aug 2019

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • oxygen functional groups on the N2-plasma-treated sample was very low, the felt showed enhanced electrochemical performance for both V3+/V2+ as well as V5+/V4+ redox reactions. The result is highly significant as the pristine electrode with the same amount of oxygen functional groups showed significantly
  • reaction (HER) at the negative electrode [2][3][4]. The air oxidation of V2+ species can be completely prevented by keeping the negative tank under inert gas atmosphere. However, the HER at the negative electrode is almost unavoidable as the redox potential of V3+/V2+ (−0.26 V vs normal hydrogen electrode
  • (NHE)) reaction is very close to HER (0 V vs NHE). To minimize the HER, the negative electrode surface structure should be tuned in such a way that it tends to preferably bind V3+/V2+ ions over H+ ions. Creating oxygen functional groups on the surface of the anode is one way to achieve this [5][6
PDF
Album
Full Research Paper
Published 13 Aug 2019

Giant magnetoresistance ratio in a current-perpendicular-to-plane spin valve based on an inverse Heusler alloy Ti2NiAl

  • Yu Feng,
  • Zhou Cui,
  • Bo Wu,
  • Jianwei Li,
  • Hongkuan Yuan and
  • Hong Chen

Beilstein J. Nanotechnol. 2019, 10, 1658–1665, doi:10.3762/bjnano.10.161

Graphical Abstract
  • -metallic Heusler alloys (HMHAs) are regarded as one of the most promising candidates for electrode materials in CPP-SV owing to their high Curie temperature, tunable electronic structure and small lattice mismatch with Ag or Cu. Moreover, the majority spin bands of HMHA across the Fermi level show typical
  • electronic structure and magnetic properties, and they deserve to be further studied and applied in spintronics devices. In this study, we built a CPP-SV device employing a half-metallic inverse Heusler alloy Ti2NiAl as the electrode and Ag as the spacer. Different atomic-terminated interfaces are considered
  • employed as a semi-infinite left and right electrode, and Ag is selected to be the middle spacer layer. For bulk Ti2NiAl, one Ti atom locates at the (0, 0, 0) site, which is described as TiA, and the other locates at the (0.25, 0.25, 0.25) site, which is described as TiB, where Ni and Al sit at (0.5, 0.5
PDF
Album
Full Research Paper
Published 08 Aug 2019
Other Beilstein-Institut Open Science Activities