Search results

Search for "nanoparticles" in Full Text gives 1224 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • carbon nanoparticles during electrophoretic purification of single-walled carbon nanotubes [1]. Sun et al. synthesized fluorescent carbon particles smaller than 10 nm, which were named “carbon dots” for the first time in 2006 [2]. Due to its significant fluorescent properties, this class of carbon
  • solvent casting process after the ACMCDs were supported by silver nanoparticles, employing them as both a reducing agent and a template. The nanocomposite antibacterial film is anticipated to have a lot of potential applications such as food packaging, water purification, and disinfecting sanitary
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • their osteoinductive properties [40][41]. Chitosan is combined with several polymeric materials and nanoparticles to mimic the natural function of the bone (Table 1) [42][43]. Chitosan biomaterials enhance the proliferation of osteoblasts and the formation of bone minerals by promoting gene expression
  • formation on rat calvaria defects indicate a strong healing effect and new bone formation on chitosan/absorbable collagen sponges [51]. Chitosan with metal nanomaterials for bone tissue engineering Chitosan–silver nanocomposites Silver nanoparticles (AgNPs) have gained much attention in bone-related implant
  • . Further, the developed material shows apatite formation in SBF and it stimulates the growth of MG-63 osteoblast-like cells. In addition, antibacterial activity was discovered against Staphylococcus aureus [85]. Chitosan–gold nanocomposites Gold nanoparticles (AuNPs) have been extensively studied for
PDF
Review
Published 29 Sep 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • China 10.3762/bjnano.13.91 Abstract Improving the photocatalytic performance of metal–organic frameworks (MOFs) is an important way to expand its potential applications. In this work, zero-dimensional (0D) Bi2O3 nanoparticles were anchored to the surface of tridimensional (3D) MIL101(Fe) by a facile
  • about the construction of Z-scheme heterojunctions by coupling MIL101(Fe) and Bi2O3. Herein, in order to enhance the photocatalytic efficiency of MIL101(Fe) for degradation of CTC, a novel 0D/3D heterojunction catalyst Bi2O3/MIL101(Fe) was prepared by anchoring Bi2O3 nanoparticles to the surface of
  • were ground to obtain Bi2O3 nanoparticles. The preparation of Bi2O3/MIL101(Fe). The Bi2O3/MIL101(Fe) composite was fabricated by a solvothermal method. The schematic synthesis procedure of Bi2O3/MIL101(Fe) is illustrated in Scheme 1. In a manner analogous to a previous report [35], 1.35 g of FeCl3·6H2O
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • . Electrocatalytic enhancement of the Ag nanoarchitectonics can be obtained via support structures and amalgamating Ag with one or two additional metals. The work presented here deals with a facile microwave-assisted synthesis to produce bimetallic Ag-Cu and Ag-Co (1:1) oxide nanoparticles (NPs) and trimetallic
  • the overall performance of the reaction [3][4]. There is an increasing use of platinum catalysts with diverse morphologies and the combination with noble and non-noble metal-based alloy/multimetallic nanoparticles (NPs) as potential electrocatalysts under extreme pH values [5][6][7][8][9][10][11][12
  • , and a limiting current density of 5.3 mA·cm−2 in 0.1 M KOH with an electron transfer value of 3.97 [24]. The strong interactions among the unsupported trimetallic nanoparticles leads to aggregation resulting in reduced activity and stability. In this regard, structural regulation can be obtained via
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • nanoparticles, open further roads towards antimicrobial or repellent protein-based materials. As an example, Harris et al. studied coatings made of recombinant spider silk proteins based on the dragline silk amino acid sequence of Nephila clavipes MaSp1 and MaSp2 on a variety of substrates [179]. The authors
PDF
Album
Review
Published 08 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • nanoparticles via the sol–gel method to decompose rhodamine-B under visible light irradiation. With the assistance of H2O2, it shows a synergistic effect between photocatalytic reaction and heterogeneous photo-Fenton-like reaction [23]. Furthermore, the strategies of being loaded over supports (such as g-C3N4
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • exhibits a eutectic between AuSn4 and Sn at 211 °C. A reaction between Au and Sn can thus be ruled out for our experimental conditions. In [23], the authors calculated the surface energy of gold nanoparticles of different shapes. The authors found that the surface energy sharply increases for diameters
PDF
Album
Full Research Paper
Published 23 Aug 2022

Efficient liquid exfoliation of KP15 nanowires aided by Hansen's empirical theory

  • Zhaoxuan Huang,
  • Zhikang Jiang,
  • Nan Tian,
  • Disheng Yao,
  • Fei Long,
  • Yanhan Yang and
  • Danmin Liu

Beilstein J. Nanotechnol. 2022, 13, 788–795, doi:10.3762/bjnano.13.69

Graphical Abstract
  • nanoparticles as anode materials to promote the rapid diffusion and electron transfer of lithium, and Rongjun Zhao prepared n-butanol gas sensors with one-dimensional In2O3 nanorods [1][2]. Different from 2D materials, 1D materials generally have a chain-like crystal structure and are easily exfoliated due to a
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • nanoparticles intended to be used in drug delivery is of great interest. To this end, different potential formulations are developed since the particle elasticity is affecting the in vitro and in vivo performance of the nanoparticles. Here we present a method to determine the elasticity of single gelatin
  • nanoparticles (GNPs). Furthermore, we introduce the possibility of tuning the elastic properties of gelatin nanoparticles during their preparation through crosslinking time. Young’s moduli from 5.48 to 14.26 MPa have been obtained. Additionally, the possibility to measure the elasticity of single nanoparticles
  • . Keywords: atomic force microscopy; drug delivery; elasticity; gelatin nanoparticles; Young’s modulus; Introduction Developing nanoparticulate drug carriers for various diseases and application routes requires establishing controllable systems, matching the needs of the respective application to achieve
PDF
Album
Full Research Paper
Published 16 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • ][38]. The networks can also help to take other components into the single crystals. Nanoparticles, such as quantum dots or iron oxide, which attach to the networks, can be encapsulated within the networks inside the single crystals, rendering the single crystals fluorescent or magnetic [39][40][41
  • attractive for purification of seawater contaminated by 137Cs [112]. Networks can capture discrete molecules or nanoparticles. When networks are encapsulated into single crystals, the captured molecules or nanoparticles can be co-encapsulated to provide additional functions to single crystals [39][40][41
  • function is quite attractive because this function is versatile even for nanoparticles. Electrodes of sodium-ion batteries can be fabricated by using the Ni–CN–Ni colloids as glue. The contribution to the adhesion strength among 2D coordination polymers was generally considered to be van der Waals forces
PDF
Album
Review
Published 12 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • nanotubes were formed by TiO2 nanotubes that uniformly anchored with Bi2WO6 nanoparticles of various densities on the surface. The composites exhibited improved photocatalytic activities toward the reduction of Cr(VI) and degradation of rhodamine B under visible light (λ > 420 nm), which were attributed to
  • the uniform anchoring of Bi2WO6 nanoparticles on TiO2 nanotubes, as well as strong mutual effects and well-proportioned formation of heterostructures in between the Bi2WO6 and TiO2 phases. These improvements arose from the cellulose-derived unique structures, leading to an enhanced absorption of
  • fabricated by depositing Bi2WO6 nanoparticles on hierarchically interwoven TiO2 nanotubes via the solvothermal method, and the densities of Bi2WO6 nanoparticles in the composites were regulated by the concentrations of the precursors. When the Bi2WO6/TiO2-NT nanocomposites were used for the photocatalytic
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • , selective, sensitive, and point-of-care (POC) analytical tools for monitoring environmental pollutants [2][11]. They can also detect residual OPs based on their electrocatalytic activity and affinity toward nanomaterials, such as nanoparticles, carbon nanomaterials, and metal oxides [11]. In a few reports
  • nanoribbons doped with silver nanoparticles, rGO doped with ZrO2, and CuO–TiO2 hybrid nanocomposites were proposed to detect methyl parathion [19][20][21][22]. Rajaji et al. (2019) modified glassy carbon electrodes with graphene oxide encapsulated 3D porous chalcopyrite (CuFeS2) nanocomposites to detect
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • the preparation of berberine (BBR) in nanoformulation to enhance its solubility and increase its antibacterial effectiveness against hospital-acquired infections. BBR nanoparticles (BBR NPs) were formed by antisolvent precipitation (ASP) using glycerol as a safe organic solvent. UV–vis absorption
  • bacterial cells and severely damaged the cell walls. Therefore, BBR NPs prepared by ASP appear to be a potential candidate for the treatment of bacterial pathogens. Keywords: antibacterial activity; antisolvent precipitation (ASP); berberine nanoparticles (BBR NPs); glycerol; solubility; Introduction
  • nanoparticles produced by EPN and ASP techniques have notably increased solubility and dissolution rate due to their semicrystalline form. The small size of the nanoparticles can be obtained by adjusting the drug concentration, flow rate, stirring rate, and antisolvent volume in EPN and ASP methods [28]. Many
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • , Karachi, Pakistan University of Hertfordshire, School of Engineering and Technology, Hatfield, UK Changzhou University, School of Materials Science and Engineering, Changzhou Science Town, Changzhou, P. R. China 10.3762/bjnano.13.54 Abstract The addition of metal oxide nanoparticles to fluids has been
  • used as a means of enhancing the thermal conductive properties of base fluids. This method formulates a heterogeneous fluid conferred by nanoparticles and can be used for high-end fluid heat-transfer applications, such as phase-change materials and fluids for internal combustion engines. These
  • nanoparticles can enhance the properties of both polar and nonpolar fluids. In the current paper, dispersions of nanoparticles were carried out in hydrocarbon and aqueous-based fluids using molecular dynamic simulations (MDS). The MDS results have been validated using the autocorrelation function and previous
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • increased due to its importance for photocatalytic application. Ohtani et al. reported that extra-fine brookite TiO2 exhibited good photocatalytic activity for redox reactions in aqueous propan-2-ol and silver sulfate solution [7]. Kobayashi et al. suggested that the photoactivity of brookite nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • developed in order to increase the reliability of the correlations between morphology and magnetism. Using the Magn3t software, the magnetic shape anisotropy magnitude and direction of magnetite nanoparticles has been extracted for the first time directly from transmission electron tomography. Keywords
  • inaccurate. In the case of magnetometry, the size can be roughly evaluated from the magnetized volumes of the material [10] with a volume–size relationship depending on shape and morphology of the nanoparticles. Such indirect approaches more or less suit the investigated systems, and whether one technique is
  • -obtained distance transform image has local maxima, which are situated in the centers of the nanoparticles. The positions of the local maxima are obtained using the morphological reconstruction method [26]. The morphological reconstruction can be viewed as repeated dilation operations on a marker image
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • pronounced correlation, which is exemplarily indicated by the dashed red circle in Figure 2a and Figure 2b. Figure 2c shows the AFM topographic image of the corresponding region of CuPc/MoSe2. The surface of the MoSe2 flake is covered by some nanoparticles marked by the dashed red circle, which were reported
  • nanoparticles, which lead to a redshift by 2 to 4 nm in the photoluminescence peak position as compared to the pristine flake. They attributed the observed photoluminescence redshift to the formation of different states or strains in the presence of oxidation nanoparticles [42]. In Figure 2f, we see redshifts
  • in the photoluminescence peak maxima, which are correlated to the high SERS intensity. Likely, new energy states through the presence of the oxidized nanoparticles were formed. The change in energy states is localized at the position of the particle aggregates, which is sensitively revealed by the
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Detection and imaging of Hg(II) in vivo using glutathione-functionalized gold nanoparticles

  • Gufeng Li,
  • Shaoqing Li,
  • Rui Wang,
  • Min Yang,
  • Lizhu Zhang,
  • Yanli Zhang,
  • Wenrong Yang and
  • Hongbin Wang

Beilstein J. Nanotechnol. 2022, 13, 549–559, doi:10.3762/bjnano.13.46

Graphical Abstract
  • University, Waurn Ponds, Victoria 3216, Australia 10.3762/bjnano.13.46 Abstract The optical and biological properties of functionalized gold nanoparticles (GNPs) have been widely used in sensing applications. GNPs have a strong binding ability to thiol groups. Furthermore, thiols are used to bind functional
  • the fluorescent “ON” form. Keywords: cell imaging; fluorescence probes; glutathione; gold nanoparticles; mercury ions; rhodamine 6G derivatives; Introduction Metal nanoparticles have been widely used in the development and construction of sensor systems and drug carriers due to their excellent
  • biocompatibility, large specific surface area, and remarkable photoelectric properties [1][2][3]. Among them, gold nanoparticles (GNPs) have been frequently employed for drug delivery, sensing, imaging, and photodynamic therapy owing to their high extinction coefficient, distinct optical properties, excellent
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022

Stimuli-responsive polypeptide nanogels for trypsin inhibition

  • Petr Šálek,
  • Jana Dvořáková,
  • Sviatoslav Hladysh,
  • Diana Oleshchuk,
  • Ewa Pavlova,
  • Jan Kučka and
  • Vladimír Proks

Beilstein J. Nanotechnol. 2022, 13, 538–548, doi:10.3762/bjnano.13.45

Graphical Abstract
  • , soft hydrogel nanoparticles, have been proven efficient carriers of proteins or peptides preserving the biological activity of their payload [12][13][14]. For instance, Ozawa et al. introduced a nanogel from highly branched cyclic dextrin derivatives that trapped fluorescein isothiocyanate-labeled
  • ) (PLGA) nanoparticles loaded with AAT were successfully manufactured and AAT release profiles from the nanoparticles were investigated [21][22]. In our previous studies, we investigated and described in detail the process of nanogelation from Nα-ʟ-lysine-grafted α,β-poly[(2-propyne)-ᴅ,ʟ-aspartamide-ran
  • increased with the decrease of initial concentration of the 125I-radiolabeled BSA. The inverse effect was found when loading BSA onto poly(acrylic acid) and hybrid hydroxyapatite nanoparticles with chitosan/polyacrylic acid nanogels, where the loading was predominantly influenced by electrostatic
PDF
Album
Full Research Paper
Published 22 Jun 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • MoS2/FTO. The resulting DSSCs showed a PCE of 7.16%, similar to that of a Pt/FTO CE (7.48%). The MoS2 film was amorphous and contained agglomerated clusters of nanoparticles [22]. Recently, Gurulakshmi et al. reported on DSSCs using a flexible CE fabricated by electrodeposition of a MoS2 thin film onto
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • of large molecules, nanoparticles, and proteins through the skin [39][40]. Considering the height, the MNs containing EE and P407 exhibited a significant positive interference (p > 0.05) (Supporting Information File 1, Table S2 and Figure S5), being greater for the amount of extract, which
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • cell line, one study investigated the anticancer activity of polymeric nanoparticles developed with many compounds (curcumin, EGCG, green tea extract, resveratrol, saponins, silymarin, and grape seed extract). Those nanoparticles target multiple signaling pathways and cause growth inhibitory effects on
PDF
Album
Full Research Paper
Published 31 May 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • fluorescence (SEF), these techniques have shown huge potential for applications in biomedicine, biotechnology, and optical sensors. Both methods rely on the high electromagnetic fields created at locations on the surface of plasmonic metal nanoparticles, depending on the geometry of the nanoparticles, their
  • as well as on tuning the photoluminescence properties of ZnO nanostructures through combination with metal nanoparticles. This review covers the major recent results of ZnO-based nanostructures used for fluorescence and Raman signal enhancement. The broad range of ZnO and ZnO–metal nanostructures
  • noble metal nanoparticles and the molecular fluorescence enhancement in the presence of ZnO alone and in combination with metal nanoparticles are also reviewed. Keywords: fluorescence; surface-enhanced Raman spectroscopy; ZnO–metal nanomaterials; ZnO nanostructures; Introduction Over the last decades
PDF
Album
Review
Published 27 May 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • ]. Nanostructured materials are widely used as the working surface of the electrode [47][48][49]. The most common are transition metal nanoparticles [33][37][50][51][52][53][54], carbon nanotubes [8], metal oxides [55][56][57][58][59][60][61][62][63][64], graphene [32][33], and ordered mesoporous carbon [38][65][66
PDF
Album
Full Research Paper
Published 03 May 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • coefficient. The resistivity of these nanocomposites depends on the p–n depletion layer width on the interface between the n-type nanoparticles and the surrounding p-type PANi molecules. Gas sensing analysis The gas sensing characterizations of sensitive layers were performed using a custom-built apparatus
PDF
Album
Full Research Paper
Published 27 Apr 2022
Other Beilstein-Institut Open Science Activities