Search results

Search for "performance" in Full Text gives 1054 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • (+1.75 eV) is more negative than that of H2O/•OH (+2.40 eV), reducing the photocatalytic efficiency [16][17]. A well-known approach for overcoming this problem in order to achieve increased photocatalytic performance is to couple two semiconductors with optimal band alignment. MgO is an alkaline metal
  • oxide with wide bandgap (3.5–5 eV), high availability, non-toxicity, low cost, and native structural defects [18][19]. The large bandgap energy is the limitation of MgO, reducing the photocatalytic performance and applicability of MgO [20]. Various efforts have been made to enhance the absorption in the
  • visible light region, including nonmetal and noble-metal doping, metal deposition, and formation of heterojunctions [21][22]. The construction of heterojunction structures has shown its effectiveness in improving photocatalytic performance by enhancing the separation of charge carriers and optimizing the
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • various functional components of the AFM instrument. A subsequent section entitled “Performance of the SPM” is dedicated to an analysis of the performance specifications of relevant AFM components such as its interferometric deflection sensor with subsections “Relevant AFM noise sources”, “Force gradient
  • noise and measurement bandwidths”, and “STM noise spectrum and tip–sample gap stability measurements”. Finally, various atomic-scale STM and AFM results described in section “Results and Discussion” structured into various subsections demonstrate the performance of our new AFM for such work. The last
  • positioning of the fiber end outside the long axis of the cantilever to measure torsional cantilever oscillation modes (see section “Performance of the SPM”) or the approach of the sample to the (cantilever) tip. An additional position of the shields opens a small access hole to the sample surface permitting
PDF
Album
Full Research Paper
Published 11 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • preparation of ZnO NPs with a size of 30 nm. The degradation efficiency of MB (5 mg/L) after 150 min of irradiation by visible and UV light was 40 and 80%, respectively, while synthesized ZnO NPs in this study can degrade more than 90% of MB (10 mg/L) under UV light after 150 min. Antibacterial performance of
  • synthesized ZnO NPs The experimental results on antibacterial performance of synthesized materials are presented in Table 2, the E. coli inhibition percentage was calculated via Equation 4. Figure 10a shows the results of inhibition efficiency of E. coli at an initial concentration of 5·104 CFU/mL by ZnO NPs
PDF
Album
Full Research Paper
Published 07 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • performance of CDs against foodborne pathogens [101]. Recently, a hydrothermal technique to build effective CDs using ginkgo kernels has been employed [82]. A unique technique was used to evaluate nitrites in corn sausage, ham sausage, preserved Szechuan pickle, and hot dog samples, yielding good results. In
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • , “On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide”, pages 121–131, Copyright (2016), with permission from Elsevier. This content is not subject to CC BY 4.0. Alkaline phosphatase activity in
PDF
Review
Published 29 Sep 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • China 10.3762/bjnano.13.91 Abstract Improving the photocatalytic performance of metal–organic frameworks (MOFs) is an important way to expand its potential applications. In this work, zero-dimensional (0D) Bi2O3 nanoparticles were anchored to the surface of tridimensional (3D) MIL101(Fe) by a facile
  • for degradation of CTC under visible-light irradiation, the removal of CTC reaches nearly 88.2% within 120 min. The excellent photocatalytic performance of the BOM-20 composite was attributed to a Z-scheme heterojunction between Bi2O3 and MIL101(Fe). The construction of the Z-scheme heterojunction not
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • the overall performance of the reaction [3][4]. There is an increasing use of platinum catalysts with diverse morphologies and the combination with noble and non-noble metal-based alloy/multimetallic nanoparticles (NPs) as potential electrocatalysts under extreme pH values [5][6][7][8][9][10][11][12
  • effects, and carbon monoxide poisoning [16][17]. The electrocatalytic reactivity (mechanism and kinetics) of silver has similarities to that of Pt regarding the ORR performance, with considerably high onset potential, half-wave potential, current density, and number of transferred electrons. The important
  • atomic-level manipulation using established materials chemistry concepts towards the assembly of functional nanoarchitectonics [25][26][27]. The assembly of nanoscale objects through combination and in situ growth routes, leading to high-performance nanoarchitectonics, is an interesting strategy. An
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • , indicating how distorted the geometry becomes. Acknowledgements The computational resources are provided by CINECA, under the ISCRA initiative through the AIXAS project and the Center for High Performance Computing (CHPC) in South Africa through the MATS0988 project. In particular, we are thankful to Dr
PDF
Album
Full Research Paper
Published 15 Sep 2022

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • coating of the complete glass. The device for recrystallization (Figure 2) consisted of a glass chamber (Vakuum- und Industrieservice Meier GmbH, Borken, Germany), a holder for the samples to be coated, a flat heater made of high-performance ceramics (40 Ω, BACH Resistor Ceramics GmbH, Werneuchen, Germany
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • governing the performance of single and multifrequency Kelvin probe force microscopy (KPFM) techniques in both air and water. Metrics such as minimum detectable contact potential difference, minimum required AC bias, and signal-to-noise ratio are compared and contrasted both off resonance and utilizing the
  • first two eigenmodes of the cantilever. These comparisons allow the reader to quickly and quantitatively identify the parameters for the best performance for a given KPFM-based experiment in a given environment. Furthermore, we apply these performance metrics in the identification of KPFM-based modes
  • that are most suitable for operation in liquid environments where bias application can lead to unwanted electrochemical reactions. We conclude that open-loop multifrequency KPFM modes operated with the first harmonic of the electrostatic response on the first eigenmode offer the best performance in
PDF
Full Research Paper
Published 12 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • complexes might compete with the hydroxyl radicals, eliciting a degradation of the reaction performance [18]. In recent years, the Fenton method has gradually developed into a new scenario of oxidation method, called photo-Fenton, which is facilitated or driven by the light source. Compared with a typical
  • transmittance and suitable surface area for degrading methylparaben. Although Ti-doped catalyst was expected as a semiconductor to enhance the photocatalytic efficiency, pure LaFeO3 still revealed the better performance of methylparaben photodegradation than LaTi0.15Fe0.85O3 [28]. On the contrary, Garcia-Muñoz
  • reactions. Moreover, LaNiO3 revealed broad absorption in the visible light range [38], so the Ni doping was expected to improve the visible light harvesting of LaFeO3. Accordingly, little literature explored the effect of Ni substitution to LaFeO3 on the performance of photocatalytic Fenton-like reaction to
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • compact molecular film is crucial to obtain high-performance devices, since an efficient charge carrier transport is hindered by morphological defects, such as grain boundaries or pinholes [10][11]. Moreover, crystalline and well-ordered layers are particularly suitable for spatially averaging
PDF
Album
Full Research Paper
Published 30 Aug 2022

Micro-structures, nanomechanical properties and flight performance of three beetles with different folding ratios

  • Jiyu Sun,
  • Pengpeng Li,
  • Yongwei Yan,
  • Fa Song,
  • Nuo Xu and
  • Zhijun Zhang

Beilstein J. Nanotechnol. 2022, 13, 845–856, doi:10.3762/bjnano.13.75

Graphical Abstract
  • , microstructures and nanomechanical properties of three beetle species with different wing folding ratios living in different environments were investigated. Factors affecting their flight performance, that is, wind speed, folding ratio, aspect ratio, and flapping frequency, were examined using a wind tunnel. It
  • was found that the wing folding ratio correlated with the lift force of the beetles. Wind speed, folding ratio, aspect ratio, and flapping frequency had a combined effect on the flight performance of the beetles. The results will be helpful to design new deployable FWMAVs. Keywords: beetle hind wings
  • ; flight performance; folding ratio; nanoindentation; wind tunnel; Introduction Regarding the benefits of scientific research, rescue, surveying, mapping, and many other aspects in the development of micro aerial vehicles (MAVs), miniaturization of aircraft has become a popular research topic [1]. Owing
PDF
Album
Full Research Paper
Published 26 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • step that can compromise device performance and reliability, thus hindering industrial production. In this context, the impact of poly(methyl methacrylate) (PMMA), the most common support material for transferring graphene from the Cu substrate to any target surface, can be decisive in obtaining
  • B2 mixture yields more consistent electric properties of the graphene channel, thanks to a homogenous and reproducible process. Such characteristics ultimately translate into a consistent sensor performance, which is pivotal for industrial fabrication. Conclusion Monolayer graphene films and single
  • transistor to reach an output voltage of 1 mV. Histogram distributions for the graphene channel resistances were plotted (using MATLAB scripts) to compare the effects of B2 and C4 PMMA-assisted graphene transfer on device performance. Based on our observations of the device performance, a threshold
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Efficient liquid exfoliation of KP15 nanowires aided by Hansen's empirical theory

  • Zhaoxuan Huang,
  • Zhikang Jiang,
  • Nan Tian,
  • Disheng Yao,
  • Fei Long,
  • Yanhan Yang and
  • Danmin Liu

Beilstein J. Nanotechnol. 2022, 13, 788–795, doi:10.3762/bjnano.13.69

Graphical Abstract
  • is beneficial for the development of high-performance nanodevices. Searching effective synthesis routes for nanoscale KP15 has become an urgent issue. Liquid-phase exfoliation is one of the most straightforward methods to prepare low-dimensional materials at a low cost and with simple processes and
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • nanoparticles intended to be used in drug delivery is of great interest. To this end, different potential formulations are developed since the particle elasticity is affecting the in vitro and in vivo performance of the nanoparticles. Here we present a method to determine the elasticity of single gelatin
PDF
Album
Full Research Paper
Published 16 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • discuss the properties of the coordination polymer single crystals as well as their performance in energy, environmental, and biomedical applications. Keywords: applications; assembly; coordination polymer; metal-organic frameworks; nanoarchitectonics; Introduction Coordination polymers are hybrid
  • , such as confined liquid networks or substrates. Then, we will discuss the assembly of the preformed monocrystalline coordination polymers inside confined liquid networks or on substrates. In both parts, the change of the properties of the coordination polymers will be summarized. The performance of the
  • ]. There are several parameters of the single crystals, such as defects, hydrophilicity, and dispersity in water, that determine the performance of the composites in biomedicine [106][107]. To introduce more controllable and repeatable synthetic methods to tailor the parameters of monocrystalline
PDF
Album
Review
Published 12 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • photocatalytic performance of the Bi2WO6 material since the recombination of photogenerated charges during photocatalysis is still too fast to produce a large amount of effective photoinduced carriers [25]. In order to solve the aforementioned problems of TiO2 and Bi2WO6 materials, researchers have fabricated
  • approx. 10 nm, which are assigned to the mesopores of the TiO2 nanocrystallites in the TiO2 nanotubes and the gaps between the Bi2WO6 nanoparticles. Photocatalytic performance Cr(VI) and RhB pollutants are selected as the model pollutants for the evaluation of the photocatalytic performance of the
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • performance of the nanosensor was validated by adding PT to natural samples and comparing the data via absorption spectroscopy. PT detection results encourage the design of easy-to-use nanosensor-based analytical tools for rapidly monitoring other environmental samples. Keywords: electrochemical nanosensor
  • parameters is a robust scientific approach to achieving the highest sensing performance of an electroactive analyte. In this work, we proposed a simple, robust, and reliable ERGO-modified nonenzymatic electrochemical nanosensor as a good alternative for a POC-based easy diagnostic platform to monitor the
  • variation of reduction peak current with accumulation potential (A), starting potential of scan (B), frequency (C), and pulse amplitude (D) are shown Figure 8A–D. Analytical performance and selectivity of the proposed nanosensor Figure 9A represents SWV curves obtained from the ERGO modified electrode for
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia 10.3762/bjnano.13.61 Abstract The strategic design of the cathode is a critical feature for high-performance and long-lasting reversibility of an energy storage system. In particular, the round
  • -trip efficiency and cycling performance of nonaqueous lithium–oxygen batteries are governed by minimizing the discharge products, such as Li2O and Li2O2. Recently, a metal–organic framework has been directly pyrolyzed into a carbon frame with controllable pore volume and size. Furthermore, selective
  • electrical conductivity further, ultimately leading to better electrochemical stability in the cathode. As a result, the optimized bimetallic ZIF–carbon/CNT composite exhibits a high discharge capacity of 16,000 mAh·g−1, with a stable cycling performance of up to 137 cycles. This feature is also beneficial
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • central for obtaining unprecedentedly high thermoelectric performance at low temperatures [19][20][21][22][23]. Ferromagnetic insulators such as EuO and EuS are interesting materials since they show ferromagnetism (they are almost ideal Heisenberg ferromagnets) but are electrically insulating at the same
PDF
Album
Full Research Paper
Published 20 Jul 2022

Tunable high-quality-factor absorption in a graphene monolayer based on quasi-bound states in the continuum

  • Jun Wu,
  • Yasong Sun,
  • Feng Wu,
  • Biyuan Wu and
  • Xiaohu Wu

Beilstein J. Nanotechnol. 2022, 13, 675–681, doi:10.3762/bjnano.13.59

Graphical Abstract
  • shift as the background refractive index changes [14]. Narrow-band absorbers have attracted attention in practical applications due to the absorption with high quality factor (Q-factor), which is beneficial to improve the sensing performance. Up to now, many strategies for improving the Q-factor have
  • interaction between graphene and incident light plays a key role in these applications. Unfortunately, it is extremely weak owing to the single-atom thickness of graphene monolayers, which severely limits the performance of graphene devices. Various approaches based on different physical mechanisms have been
  • performance by adjusting the geometrical parameters. This indicates a large geometric tolerance, which is advantageous for fabrication. More importantly, the operating wavelength can be tuned by only a small change in the Fermi level, which is particularly attractive as the absorption properties can be
PDF
Album
Full Research Paper
Published 19 Jul 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • resistance of the deposited films, we find a tradeoff between transparency and electrical performance for applications in transparent conductors. We demonstrate that, below a certain critical thickness, graphene films deposited with LB reach a percolation limit, which imposes a minimum achievable film
PDF
Album
Full Research Paper
Published 18 Jul 2022

Fabrication and testing of polymer microneedles for transdermal drug delivery

  • Vahid Ebrahiminejad,
  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2022, 13, 629–640, doi:10.3762/bjnano.13.55

Graphical Abstract
  • manufacturing processes for MNs is of considerable interest. This study reports a simple fabrication process for thermoplastic MNs from cycloolefin polymers (COP) using hot embossing on polydimethylsiloxane (PDMS) soft molds. COP has gained interest due to its high molding performance and low cost. The resin
  • of bending, buckling, and tip blunting were then examined using compression tests and also theoretically. MN array insertion performance was studied in vitro on porcine back skin using both a prototype custom-made applicator and a commercial device. An adjustable skin stretcher mechanism was designed
  • produced penetration of ≈20 µm to 60 µm when their application speed increased from ≈0.25 m/s to 2 m/s [33]. In our experiments, for both applicators, insertion performance depends not only on impact velocity, but also on the number of MNs, MN interspacing, MN base diameter, and skin type, though, in this
PDF
Album
Full Research Paper
Published 08 Jul 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • publication by Choi et al. [3] in 1995, nanofluids have been extensively studied since the addition of nanoparticles significantly enhances the heat-transfer performance of the base fluid [4][5][6]. This has promoted various applications of nanofluids in a wide range of fields, such as cooling fluids for
  • As phase-change materials, alkane-based nanofluids are being used and it is found that as PCM nanofluids of CuO provide enhanced performance. Therefore, CuO nanoparticles in a nonpolar medium can serve as thermal storage materials [36]. Moreover, heat carrier metal/organic nanofluids of methanol and
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022
Other Beilstein-Institut Open Science Activities