Search results

Search for "semiconductor" in Full Text gives 618 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Microbubbles decorated with dendronized magnetic nanoparticles for biomedical imaging: effective stabilization via fluorous interactions

  • Da Shi,
  • Justine Wallyn,
  • Dinh-Vu Nguyen,
  • Francis Perton,
  • Delphine Felder-Flesch,
  • Sylvie Bégin-Colin,
  • Mounir Maaloum and
  • Marie Pierre Krafft

Beilstein J. Nanotechnol. 2019, 10, 2103–2115, doi:10.3762/bjnano.10.205

Graphical Abstract
  • silicon wafer and immediately spun for 1 min at 3000 rpm (Spin150 from SPS, Semiconductor Production Systems Europe). The spin-coated samples were placed under vacuum in a desiccator for 15‒20 h to fully evaporate the solvents. The silicon wafers were stored at 4 °C until the AFM measurements. AFM images
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2019

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • the Γ point, while the maximum of the first valence band (VBM) appears at the S point. The indirect bandgap of the MoO3 monolayer is computed as 1.79 eV for PBE and 2.85 eV for HSE06, which is consistent with previous studies [17][31]. Since the MoO3 monolayer is a wide-gap semiconductor, it is likely
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) as an organic semiconductor co-crystallized with an alkyl derivative of bisphenol A as a hapten [102] (Figure 6). Upon binding of the anti-bisphenol A antibody, the output current of the transistor first decreased. The addition of bisphenol
  • semiconductor CCD-type pH imaging sensor [143]. Although the sensitivity of the prepared sensor is inferior to that of other fluorescence sensors, this sensor nanoarchitectonics approach does not require any labelling procedures. Therefore, it may be useful for the estimation of ATP discharge in damaged cells
  • . Ultrathin film nanoarchitectures are crucial not only for the facile contact between analytes and the sensor device but also with respect to the carrier mobility for semiconductor-based sensor devices. The enhancement of sensor performance on ultrathin films has been recognized in several recent research
PDF
Album
Review
Published 16 Oct 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • as molecular imaging tools [8]. In general, NPs carry high contrast agent payloads in comparison to smaller moieties [9]. Semiconductor quantum dots (QDs) are nanosized crystals, a photostable fluorophore with a broad excitation spectrum but narrow emission at wavelengths dependent on the size and
PDF
Album
Full Research Paper
Published 07 Oct 2019

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • orthorhombic semiconductor to a simple cubic metal with increasing pressure by performing in situ ADXRD and Raman spectroscopy with the assistance of a DAC apparatus. They also carried out first principles calculations to interpret the metallic behavior of BP under pressure. Pablo et al. investigated the
  • substance of pressure-related quantum transport in pure BP devices in this paper is not changed. When RC = 15%, monolayer BP becomes an indirect bandgap semiconductor. When RC = 30%, the conduction band minimum (CBM) descends below the valence band maximum (VBM), and the monolayer BP finally becomes a
  • increasing RC. When RC reaches ca. 5%, the monolayer BP changes from a direct bandgap semiconductor to an indirect bandgap semiconductor. With further increase of RC, the bandgap decreases continuously, and the monolayer BP eventually becomes a conductor when RC is 25–30%. The fully relaxed BP and partially
PDF
Album
Full Research Paper
Published 24 Sep 2019

Prestress-loading effect on the current–voltage characteristics of a piezoelectric p–n junction together with the corresponding mechanical tuning laws

  • Wanli Yang,
  • Shuaiqi Fan,
  • Yuxing Liang and
  • Yuantai Hu

Beilstein J. Nanotechnol. 2019, 10, 1833–1843, doi:10.3762/bjnano.10.178

Graphical Abstract
  • ; piezoelectric property; p–n junction; Introduction With the new area of piezotronics proposed by Wang [1][2], researches on the fundamental characteristics of piezoelectric semiconductor structures and devices have been increasing. It should be emphasized that the most commonly utilized semiconductors at
  • ][7][8][9][10][11][12][13], MOSFETs [1][14], and acoustic charge transport devices [15][16][17]. For piezoelectric semiconductor devices, analyses on the static, time-harmonic and transient behaviors seem particularly important regarding their applications and development [18]. Zhang et al. [19
  • ] studied the static extensional behavior of a piezoelectric semiconductor nanofiber. Liang et al. [20] analyzed the fundamental characteristics of a cantilevered ZnO nanowire exposed to a transient end force. Recently, Fan et al. [21] and Zhang et al. [22] revisited the bending behavior of a cantilevered
PDF
Album
Full Research Paper
Published 06 Sep 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • . Electrical characterization All of the electrical characterization experiments were performed using a Keysight B1500A semiconductor device analyzer and a probe station with micromanipulation probes. Topological phase and characterization of 1T’-WTe2. a) Side and top views of lattice structures of 1T’-WTe2
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

Giant magnetoresistance ratio in a current-perpendicular-to-plane spin valve based on an inverse Heusler alloy Ti2NiAl

  • Yu Feng,
  • Zhou Cui,
  • Bo Wu,
  • Jianwei Li,
  • Hongkuan Yuan and
  • Hong Chen

Beilstein J. Nanotechnol. 2019, 10, 1658–1665, doi:10.3762/bjnano.10.161

Graphical Abstract
  • [21]. Spin gapless semiconductor characteristics are also demonstrated in Mn2CoAl [22][23][24][25] and Ti2MnAl [26][27]. The interface characteristics of heterostructures based on inverse Heusler alloys have been studied in detail [28][29][30]. Therefore, inverse Heusler compounds exhibit exceptional
PDF
Album
Full Research Paper
Published 08 Aug 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • ]). Strontium titanate, SrTiO3, is a perfect example of a semiconductor with a wide bandgap of 3.2 eV and also a model perovskite oxide. Ti4+ cations provide no electrons for the d-band, which can participate in conductivity. Strontium titanate finds many applications as a dielectric ceramic material [15] but
PDF
Album
Full Research Paper
Published 02 Aug 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • high temperatures in the range of 300–800 °C. The development of high-temperature gas sensors requires the creation of new materials that are stable under these conditions. The stability of nanostructured semiconductor oxides at high temperature can be enhanced by creating composites with highly
  • dispersed silicon carbide (SiC). In this work, ZnO and SiC nanofibers were synthesized by electrospinning of polymer solutions followed by heat treatment, which is necessary for polymer removal and crystallization of semiconductor materials. ZnO/SiC nanocomposites (15–45 mol % SiC) were obtained by mixing
  • monitoring the complete combustion of fuel and controlling medium-temperature chemical and metallurgical processes [3][4][5]. The development of high-temperature gas sensors requires the creation of new materials that are stable at 300–600 °C, high humidity, and lack of oxygen. Nanostructured semiconductor
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Development of a new hybrid approach combining AFM and SEM for the nanoparticle dimensional metrology

  • Loïc Crouzier,
  • Alexandra Delvallée,
  • Sébastien Ducourtieux,
  • Laurent Devoille,
  • Guillaume Noircler,
  • Christian Ulysse,
  • Olivier Taché,
  • Elodie Barruet,
  • Christophe Tromas and
  • Nicolas Feltin

Beilstein J. Nanotechnol. 2019, 10, 1523–1536, doi:10.3762/bjnano.10.150

Graphical Abstract
  • metrology has been recently defined in the semiconductor industry [6][7][8]. In fact, the challenges posed by the constraints of Moore’s law with a continuous shrinkage of transistor dimensions are huge in terms of metrology. The abandonment of a technology based only on silicon and the emergence of 3D
PDF
Album
Full Research Paper
Published 26 Jul 2019

Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

  • Petronela Prepelita,
  • Ionel Stavarache,
  • Doina Craciun,
  • Florin Garoi,
  • Catalin Negrila,
  • Beatrice Gabriela Sbarcea and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2019, 10, 1511–1522, doi:10.3762/bjnano.10.149

Graphical Abstract
  • energy of the oscillator, E0, and dispersion energy, Ed [44] as: where ν is the photon frequency. From the graphical representation (n2 − 1)−1 = f [(hν)2] we get the slope (E0Ed)−1, where E0 is considered to be an average of the bandgap energy of semiconductor and has the expression E0 ≈ 2Eg. The optical
PDF
Album
Full Research Paper
Published 25 Jul 2019

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • precursors and at temperatures not suitable for conventional ALD. Keywords: lithiated thin films; lithium hydride; solution atomic layer deposition (sALD); Introduction While the development of electric motors and semiconductor devices is progressing, the pressure on battery development is increasing
PDF
Album
Full Research Paper
Published 18 Jul 2019

Selective gas detection using Mn3O4/WO3 composites as a sensing layer

  • Yongjiao Sun,
  • Zhichao Yu,
  • Wenda Wang,
  • Pengwei Li,
  • Gang Li,
  • Wendong Zhang,
  • Lin Chen,
  • Serge Zhuivkov and
  • Jie Hu

Beilstein J. Nanotechnol. 2019, 10, 1423–1433, doi:10.3762/bjnano.10.140

Graphical Abstract
  • color because of its oxygen vacancy, which is an important reason why WO3 exhibits n-type semiconductor characteristics. WO3 is a multifunctional semiconductor material and widely used in phototropism [1], electrochromism [2], photocatalysis [3], electrochemistry [4], gas sensing [5] and other fields
  • semiconductor sensor is complicated. It is influenced by many factors including their structure, working temperature, bond dissociation energy of gas molecules, and so forth [30]. In this work, the working temperature is considered as the main factor that affects the selectivity of our sensor. Figure 11
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2019

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • such as doping [21], sensitization [22], modification [23], coupled and supported semiconductors [24]. As an important bismuth oxyhalide semiconductor material, bismuth oxychloride (BiOCl) has gained extensive attention in photocatalysis [25][26]. BiOCl has a band gap of 3.05–3.55 eV [27], which allows
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • RT within a few hours. We therefore conclude that KPFM has the following limitations: i) Only oxidization-resistant metals/semiconductor nanoinclusions can be used. Transition metals react with air and, thus, vacuum equipment is required for the preparation, transport and measurement. ii) The
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • Besòs, Catalonia, Barcelona, 08019, Spain 10.3762/bjnano.10.136 Abstract This work is an investigation of the properties of semiconductor materials based on metal oxides, their catalytic properties, and their application as gas sensors, which were shown to exhibit high sensitivity, stability, and
  • ; gas transport method; nanowires; quasi-one-dimensional materials; sol–gel synthesis; tin dioxide; X-ray absorption near edge structure (XANES); X-ray photoelectron spectroscopy (XPS); Introduction Semiconductor sensor functionality relies on heterogeneous catalytic chemical processes, which makes the
  • formed material. Sol–gel processes comprise the synthesis of nanopowders, consisting of spherical nanoparticles, the preparation of pastes from these powders, and finally, deposition and annealing. The development of the sol–gel synthesis of small particle semiconductor materials is no longer a
PDF
Album
Full Research Paper
Published 08 Jul 2019

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • , enhancing photoresponse and providing more active sites. Our work shows a possible design of efficient photocatalysts for environmental remediation. Keywords: Au nanoparticles; 0D/1D composite; CuBi2O4 microrods; photocatalysis; photocatalytic degradation; Introduction Heterogeneous semiconductor
  • photocatalysis as an advanced green technology has been widely studied and applied for the removal of organic pollutants from water [1][2][3]. The catalytic activity of many wide-bandgap (Eg) semiconductor photocatalysts is restricted to UV light radiation, which is only 5% of the solar spectrum. Hence, the
  • development of visible-light-driven photocatalysts is highly desirable because visible light accounts for about 43% of the solar spectrum. Currently, bismuth-based semiconductor materials, including Bi2O3 [4], BiVO4 [5][6], Bi2WO6 [7], Bi2MoO6 [8], BiOX (X = Cl, Br, I) [9], and Bi2O2CO3 [10], are explored as
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • [1][2][3][4][5][6][7]. The catalytic activity can be enhanced by the presence of defects, such as oxygen vacancies (Ov), Ti interstitials (Tiint) [8], and crystal steps. TiO2 is an n-type semiconductor because of these defects. In addition, reactive oxygen species, such as OH and H2O2 (compounds with
  • , we can rule out this effect because the work function decreased at the steps although TiO2 is an n-type semiconductor. It can be inferred that the local surface potential at the steps does not change simply because the sample is an n- or p-type material. Fourth, we consider the effect of the induced
  • steps of well-ordered Si(111) semiconductor surfaces has been explained by the Smoluchowski effect [19]. Therefore, the change in CPD at steps of n-type TiO2 might be explained by the Smoluchowski effect. The Smoluchowski effect is well known for metals that have an orders of magnitude higher density of
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface

  • Robert Harbers,
  • Timo Heepenstrick,
  • Dmitrii F. Perepichka and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2019, 10, 1188–1199, doi:10.3762/bjnano.10.118

Graphical Abstract
  • ]. These authors [20][21] also noted that HTPEN is a one-dimensional semiconductor when it is synthesized in the form of nanowires. These nanowires exhibit a molecular structure similar to that of the bulk crystal with the primary growth direction along the [100] direction. These wires are considered to
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2019

Electroluminescence and current–voltage measurements of single-(In,Ga)N/GaN-nanowire light-emitting diodes in a nanowire ensemble

  • David van Treeck,
  • Johannes Ledig,
  • Gregor Scholz,
  • Jonas Lähnemann,
  • Mattia Musolino,
  • Abbes Tahraoui,
  • Oliver Brandt,
  • Andreas Waag,
  • Henning Riechert and
  • Lutz Geelhaar

Beilstein J. Nanotechnol. 2019, 10, 1177–1187, doi:10.3762/bjnano.10.117

Graphical Abstract
  • significant improvements of the overall performance of NW LEDs. More importantly, information about the actual current density in the semiconductor heterostructure is crucial for a meaningful assessment of NW-ensemble devices, in particular in comparison with planar devices. This information is equally
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • dioxide and zinc oxide nanoparticles with clay minerals to give diverse clay–semiconductor nanoarchitectures are summarized and critically discussed in this review article. The possibility to use clay minerals as starting components showing different morphologies, such as layered, fibrous, or tubular
  • transformation and for improved overall reaction efficiency. This article tries also to present new steps towards more sophisticated but efficient and highly selective functional nanoarchitectures incorporating photosensitizer elements for tuning the semiconductor–clay photoactivity. Keywords: clays
  • often than ZnO NPs regarding their use as photocatalysts. One of the main applications of clay–semiconductor materials is the mineralization of organic pollutants, which represents an ideal solution for the remediation of wastewater contaminated with diverse organic species. This process consists in the
PDF
Album
Review
Published 31 May 2019

Quantitative analysis of annealing-induced instabilities of photo-leakage current and negative-bias-illumination-stress in a-InGaZnO thin-film transistors

  • Dapeng Wang and
  • Mamoru Furuta

Beilstein J. Nanotechnol. 2019, 10, 1125–1130, doi:10.3762/bjnano.10.112

Graphical Abstract
  • atmosphere for 1 h. The TFTs are designed with fixed width (W) of 50 μm and length (L) of 20 μm. The current–voltage (I–V) curves are measured using an Agilent 4156C semiconductor parameter analyzer at room temperature. For the photo-leakage current measurements, monochromatic light with wavelengths λ of 400
  • formation of the metal-oxide atomic framework, improving the channel layer quality. The notorious I–V hysteresis is regarded as an indicator for the quality of the GI/semiconductor interface. The values of the hysteresis, i.e., the difference of VGS at IDS = 1 pA scanned in the forward and reverse
  • , and 292 mV/dec. for the TFTs treated at 300, 350, and 400 °C, respectively. Note that the SS is a measure for the total density of trap states (Nt) in the semiconductor bulk and the front interface of a TFT device. On the basis of the functional relationship between of SS and Nt [10], an Nt value of
PDF
Album
Full Research Paper
Published 27 May 2019

Synthesis and characterization of quaternary La(Sr)S–TaS2 misfit-layered nanotubes

  • Marco Serra,
  • Erumpukuthickal Ashokkumar Anumol,
  • Dalit Stolovas,
  • Iddo Pinkas,
  • Ernesto Joselevich,
  • Reshef Tenne,
  • Andrey Enyashin and
  • Francis Leonard Deepak

Beilstein J. Nanotechnol. 2019, 10, 1112–1124, doi:10.3762/bjnano.10.111

Graphical Abstract
  • compound has a full dz2 Cr level and is a semiconductor, the Sr-substituted compound is electron deficient, and hence, is metallic. The maximum content of Sr in SrxLa1−xS–NbS2 was found to be 45 atom %, [44][45] and 35 atom % in SrxLa1−x–VS2 [41][42]. In this latter case, the MLC can be transformed from a
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • performance of vacuum-prepared materials and non-vacuum-prepared materials is usually attributed to the sensitivity of the chalcopyrite semiconductor to external contaminants [29], to the dependency of its properties on the preparation method [30], and to the self-doping characteristics of the chalcopyrite
PDF
Album
Full Research Paper
Published 22 May 2019
Other Beilstein-Institut Open Science Activities