Search results

Search for "solar cells" in Full Text gives 265 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Blue and white light emission from zinc oxide nanoforests

  • Nafisa Noor,
  • Luca Lucera,
  • Thomas Capuano,
  • Venkata Manthina,
  • Alexander G. Agrios,
  • Helena Silva and
  • Ali Gokirmak

Beilstein J. Nanotechnol. 2015, 6, 2463–2469, doi:10.3762/bjnano.6.255

Graphical Abstract
  • produce UV [9], blue [10] or white light [11]. Recently there have also been reports on dye-sensitized solar cells [12][13] that utilize ZnO nanostructures. ZnO, with its interesting electronic and optical properties [14] and possibility of synthesis using relatively simple approaches, can become a low
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2015

Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method

  • Mikalai V. Malashchonak,
  • Alexander V. Mazanik,
  • Olga V. Korolik,
  • Еugene А. Streltsov and
  • Anatoly I. Kulak

Beilstein J. Nanotechnol. 2015, 6, 2252–2262, doi:10.3762/bjnano.6.231

Graphical Abstract
  • ; semiconductor photoelectrochemistry; wide band gap oxide; Introduction Quantum dot sensitized solar cells (QDSSCs) utilize light absorbed by semiconductor nanoparticles (CdS, CdSe, CdTe, PbS, etc.) deposited on wide band gap oxide (WBGO) scaffolds (TiO2, ZnO, In2O3) which act as a photoanode [1][2][3][4][5][6
PDF
Album
Full Research Paper
Published 30 Nov 2015

Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

  • Amirreza Shayganpour,
  • Alberto Rebaudi,
  • Pierpaolo Cortella,
  • Alberto Diaspro and
  • Marco Salerno

Beilstein J. Nanotechnol. 2015, 6, 2183–2192, doi:10.3762/bjnano.6.224

Graphical Abstract
  • , following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2015

A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials

  • Daniela Lehr,
  • Markus R. Wagner,
  • Johanna Flock,
  • Julian S. Reparaz,
  • Clivia M. Sotomayor Torres,
  • Alexander Klaiber,
  • Thomas Dekorsy and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2015, 6, 2161–2172, doi:10.3762/bjnano.6.222

Graphical Abstract
  • indispensable constituents in important technological devices such as flat panel displays, touch screens, solar cells and photocatalytic systems [1][2][3][4]. Among the different materials used for this purpose [5] such as carbon nanostructures [6][7][8], silver nanowires [9][10] or conducting polymers [11
PDF
Album
Supp Info
Correction
Full Research Paper
Published 18 Nov 2015

Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties

  • Andrea Capasso,
  • Theodoros Dikonimos,
  • Francesca Sarto,
  • Alessio Tamburrano,
  • Giovanni De Bellis,
  • Maria Sabrina Sarto,
  • Giuliana Faggio,
  • Angela Malara,
  • Giacomo Messina and
  • Nicola Lisi

Beilstein J. Nanotechnol. 2015, 6, 2028–2038, doi:10.3762/bjnano.6.206

Graphical Abstract
  • emitting diodes, and solar cells [1][2][3][4][5][6][7][8]. Since its discovery, graphene was proposed as an ideal material for TCEs thanks to its transparency and superior electrical conductivity [9][10]. To date, graphene films have been produced through a multitude of different techniques and used to
PDF
Album
Supp Info
Full Research Paper
Published 14 Oct 2015

Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis

  • Jacek Wojnarowicz,
  • Sylwia Kusnieruk,
  • Tadeusz Chudoba,
  • Stanislaw Gierlotka,
  • Witold Lojkowski,
  • Wojciech Knoff,
  • Malgorzata I. Lukasiewicz,
  • Bartlomiej S. Witkowski,
  • Anna Wolska,
  • Marcin T. Klepka,
  • Tomasz Story and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2015, 6, 1957–1969, doi:10.3762/bjnano.6.200

Graphical Abstract
  • ][13][14], solar cells [10], catalysts [15], energy storage (battery) materials [16], fast data storage [17], light-emitting diodes (LEDs) [18], gas sensors [10], thermoelectric devices [19], varistors [20][21], window materials for displays [21], laser technology [10], surface acoustic wave devices
PDF
Album
Full Research Paper
Published 30 Sep 2015

Nanostructures for sensors, electronics, energy and environment II

  • Nunzio Motta

Beilstein J. Nanotechnol. 2015, 6, 1937–1938, doi:10.3762/bjnano.6.197

Graphical Abstract
  • be exploited in room temperature gas sensing devices. The plasmonic effect, generated by the inclusion of metallic nanoparticles, can be used to overcome certain limitations of the carbon materials, especially in organic solar cells [5]. The optical properties of nanomaterials can also be exploited
  • also be used to offset these effects, acting as a valuable material for energy generation, storage, carbon sequestration [1] and sensing [2][3]. Carbon can be employed in one or more of its allotrope forms (e.g., graphene, carbon nanotubes, fullerene) in devices such as organic and inorganic solar
  • cells and supercapacitors [4]. These devices can be produced in large quantities with inexpensive synthesis and process methods based on printing and roll-to-roll techniques, establishing the basis of a new green technology. Currently, most of the research effort in the field is focused on the synthesis
PDF
Editorial
Published 23 Sep 2015

Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

  • Luc Aymard,
  • Yassine Oumellal and
  • Jean-Pierre Bonnet

Beilstein J. Nanotechnol. 2015, 6, 1821–1839, doi:10.3762/bjnano.6.186

Graphical Abstract
  • friendly renewable power sources with enhanced electrical energy conversion efficiency at moderate costs. However, these energy sources, such as windmill or solar cells, are intrinsically intermittent and, consequently, need to be associated with efficient energy storage devices in order to provide
PDF
Album
Review
Published 31 Aug 2015

Nonlinear optical properties of near-infrared region Ag2S quantum dots pumped by nanosecond laser pulses

  • Li-wei Liu,
  • Si-yi Hu,
  • Yin-ping Dou,
  • Tian-hang Liu,
  • Jing-quan Lin and
  • Yue Wang

Beilstein J. Nanotechnol. 2015, 6, 1781–1787, doi:10.3762/bjnano.6.182

Graphical Abstract
  • surrounding the QDs will be changed. Ag2S has a narrow band gap, which leads to the strong absorption characteristics of Ag2S and which makes Ag2S particularly suitable for use in optical detectors and solar cells. Conclusion In summary, we have demonstrated, using NIR Ag2S QDs pumped by 532 nm nanosecond
PDF
Album
Full Research Paper
Published 24 Aug 2015

Template-controlled mineralization: Determining film granularity and structure by surface functionality patterns

  • Nina J. Blumenstein,
  • Jonathan Berson,
  • Stefan Walheim,
  • Petia Atanasova,
  • Johannes Baier,
  • Joachim Bill and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 1763–1768, doi:10.3762/bjnano.6.180

Graphical Abstract
  • the site-selective mineralization of a semiconductor material, zinc oxide (ZnO), on a chemically patterned surface [3]. ZnO thin films are of special interest since they can be used for different applications such as solar cells [16], biosensing devices [17] and others [18]. By using a nearly
PDF
Album
Full Research Paper
Published 20 Aug 2015

A facile method for the preparation of bifunctional Mn:ZnS/ZnS/Fe3O4 magnetic and fluorescent nanocrystals

  • Houcine Labiadh,
  • Tahar Ben Chaabane,
  • Romain Sibille,
  • Lavinia Balan and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2015, 6, 1743–1751, doi:10.3762/bjnano.6.178

Graphical Abstract
  • diodes [6][7] or solar cells [8]. Conventional QDs systems have a core/shell architecture. The shell, generally constituted of a wide band gap material such as ZnS, prevents degradation and preserves the optical properties [3][4]. Magnetic nanoparticles have many advantages, especially for biological
PDF
Album
Full Research Paper
Published 17 Aug 2015

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
  • is relatively small, the mobility is large and the diffusion length of excited electron–hole pairs can be in the 100 µm range for indirect semiconductors [1]. The examination of photovoltaic materials with properties deviating from conventional solar cells can lead to new strategies for a wide
  • variety of solar cells. In recent years, organic and other narrow bandwidth semiconductors came into the focus of research efforts [2][3][4][5][6][7]. They often result in new types of quasi-particles such as polarons (i.e., bound states of charge and lattice distortions). Polarons are present in organic
  • , mixed halides. The constituents for manganite oxide are: A = rare earth, alkali metal, mixed composition, B = Mn, and X = O. The organic/inorganic halide perovskites exhibit good optical absorption and favorable electrical properties, thus offering the possibility for use in high efficiency solar cells
PDF
Album
Full Research Paper
Published 07 Jul 2015

Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: doping and surface passivation

  • Natalia E. Mordvinova,
  • Alexander A. Vinokurov,
  • Oleg I. Lebedev,
  • Tatiana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2015, 6, 1237–1246, doi:10.3762/bjnano.6.127

Graphical Abstract
  • dots (QDs) based on III–V materials are promising objects for fundamental research as well as for practical application. In particular, such QDs could be successfully used in biomedicine, in the production of QD-based LEDs, solar cells and sensors [1][2][3][4]. This is because of their relatively large
PDF
Album
Full Research Paper
Published 01 Jun 2015

Electronic interaction in composites of a conjugated polymer and carbon nanotubes: first-principles calculation and photophysical approaches

  • Florian Massuyeau,
  • Jany Wéry,
  • Jean-Luc Duvail,
  • Serge Lefrant,
  • Abu Yaya,
  • Chris Ewels and
  • Eric Faulques

Beilstein J. Nanotechnol. 2015, 6, 1138–1144, doi:10.3762/bjnano.6.115

Graphical Abstract
  • exceed the exciton diffusion length [12], which is the case for ECP–fullerene-based solar cells in which fullerene molecules are able to capture the negative charges while the holes remain on the conjugated polymer [13]. Still, evidence for similar photoinduced charge-transfer or energy-transfer
PDF
Album
Full Research Paper
Published 08 May 2015

Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

  • Sini Kuriakose,
  • D. K. Avasthi and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2015, 6, 928–937, doi:10.3762/bjnano.6.96

Graphical Abstract
  • gap and large exciton binding energy, making it suitable for a wide range of applications such as UV lasers [11], dye-sensitized solar cells [12][13][14], gas sensors [15][16], UV sensors [17], light emitting diodes [18], spintronic devices [19], transparent conductive electrodes [20], lasers [21
  • promising for applications ranging from solar cells to lithium-ion batteries [26][27][28][29]. ZnO–CuO nanocomposites formed by combining ZnO and CuO nanostructures are expected to exhibit improved physicochemical properties as compared to pure ZnO and CuO nanostructures, because of the formation of nano
  • -heterojunctions leading to a modification of optical and electronic properties, which finds promising applications in photocatalysis [30], sensors [31] and solar cells [32]. Several methods have been used to modify the optical, electrical and structural properties of nanostructured materials and nanocomposite
PDF
Album
Full Research Paper
Published 10 Apr 2015

Experimental determination of the light-trapping-induced absorption enhancement factor in DSSC photoanodes

  • Serena Gagliardi and
  • Mauro Falconieri

Beilstein J. Nanotechnol. 2015, 6, 886–892, doi:10.3762/bjnano.6.91

Graphical Abstract
  • Serena Gagliardi Mauro Falconieri ENEA, C. R. Casaccia via Anguillarese 301, 00123 Roma, Italy 10.3762/bjnano.6.91 Abstract For dye-sensitized solar cells (DSSC), the fundamental process that determines the maximum short-circuit current is the absorption of light. In such devices, this is
  • optical functionality of novel photoanode structures. Keywords: dye-sensitized solar cells; light trapping; optical characterization; photoanode modeling; titania nanostructures; Introduction The exploitation of solar irradiation, in particular by the use of photovoltaic (PV) technologies, is a widely
  • recognized target for renewable energy production. Among the different technologies, dye-sensitized solar cells (DSSC) have attracted particular interest, starting from the publication of the seminal paper of Gratzel and O’Reagan in 1991 [1]. A DSSC is a photoelectrochemical system, similar to others studied
PDF
Album
Full Research Paper
Published 02 Apr 2015

Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

  • Florian Waltz,
  • Hans-Christoph Schwarz,
  • Andreas M. Schneider,
  • Stefanie Eiden and
  • Peter Behrens

Beilstein J. Nanotechnol. 2015, 6, 799–808, doi:10.3762/bjnano.6.83

Graphical Abstract
  • where highly conductive materials are required (e.g., solar cells and light emitting diodes (LEDs)), ZnO must be doped. Several groups have reported the successful doping of ZnO films with dopants such as magnesium [21], iodine [22], boron [23][24], titanium [25], manganese [26], and aluminium [27][28
PDF
Album
Full Research Paper
Published 24 Mar 2015

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

  • Omar F. Farhat,
  • Mohd M. Halim,
  • Mat J. Abdullah,
  • Mohammed K. M. Ali and
  • Nageh K. Allam

Beilstein J. Nanotechnol. 2015, 6, 720–725, doi:10.3762/bjnano.6.73

Graphical Abstract
  • realized by adjusting the synthesis conditions. Keywords: chemical bath deposition (CBD); nanorods; Raman; XRD; ZnO; Introduction Metal oxides are multifunctional materials with a wide range of applications encompassing photonic devices, high-K dielectrics, sensors, implants, and solar cells [1][2]. It
  • membranes. Consequently, low-temperature fabrication routes are essential to maximize the benefits of the unique material architecture. The crystallinity of the ZnO nanorods must also be controlled for their application in photocatalysis and in dye-sensitized solar cells. Further, single crystals are
PDF
Album
Full Research Paper
Published 12 Mar 2015

Overview of nanoscale NEXAFS performed with soft X-ray microscopes

  • Peter Guttmann and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 595–604, doi:10.3762/bjnano.6.61

Graphical Abstract
  • to titanium atoms in distinct atomic sites within the lattice [58][59]. After these first encouraging investigations further spectroscopic studies on nanostructures containing metal atoms like copper were performed. It was shown that chemical analysis of nanowires for solar cells can be performed by
PDF
Album
Review
Published 27 Feb 2015

Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach

  • Alireza Kharazmi,
  • Nastaran Faraji,
  • Roslina Mat Hussin,
  • Elias Saion,
  • W. Mahmood Mat Yunus and
  • Kasra Behzad

Beilstein J. Nanotechnol. 2015, 6, 529–536, doi:10.3762/bjnano.6.55

Graphical Abstract
  • optoelectronics [2], lasers [3] and solar cells [4]. During the fabrication of devices that utilize semiconductor nanoparticles (NPs), such as ZnS NPs, the tendency of particles to agglomerate needs to be taken into consideration. The use of organic polymers as a host can help to prevent agglomeration and
PDF
Album
Full Research Paper
Published 23 Feb 2015

Electrical properties of single CdTe nanowires

  • Elena Matei,
  • Camelia Florica,
  • Andreea Costas,
  • María Eugenia Toimil-Molares and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2015, 6, 444–450, doi:10.3762/bjnano.6.45

Graphical Abstract
  • solar cells and its high absorption coefficient makes it extremely efficient. Figure 3 gives the optical reflection spectra for arrays of CdTe nanowires prepared at different overvoltages. The band gap of the semiconductor was determined to be 1.49 eV by employing the Kubelka–Munk function. This value
PDF
Album
Full Research Paper
Published 12 Feb 2015

Influence of size, shape and core–shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx

  • Sergio D’Addato,
  • Daniele Pinotti,
  • Maria Chiara Spadaro,
  • Guido Paolicelli,
  • Vincenzo Grillo,
  • Sergio Valeri,
  • Luca Pasquali,
  • Luca Bergamini and
  • Stefano Corni

Beilstein J. Nanotechnol. 2015, 6, 404–413, doi:10.3762/bjnano.6.40

Graphical Abstract
  • , it was found that Au NPs [5] and Ag NPs [6] deposited on thin film- and wafer-based Si solar cells can enhance their photon absorption due to the occurrence of surface plasmon resonance (SPR), which serves to scatter the incident radiation in the UV–vis region and to increase the light trapping
  • capability. Plasmon-enhanced absorption can also be achieved by applying NPs on the rear surface of thin film solar cells, which significantly improves the performance of such devices, rendering them more cost-effective than their wafer-based counterparts [7][9]. Plasmon-enhanced performance can also be
  • achieved in organic solar cells by incorporating Ag NPs on surface-modified transparent electrodes [8], and in LEDs by increasing their external quantum efficiency [6]. On the other hand, a number of studies on the optical properties of noble metal NPs on different surfaces have been performed [10][11
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2015

Carrier multiplication in silicon nanocrystals: ab initio results

  • Ivan Marri,
  • Marco Govoni and
  • Stefano Ossicini

Beilstein J. Nanotechnol. 2015, 6, 343–352, doi:10.3762/bjnano.6.33

Graphical Abstract
  • limitations of traditional solar cell devices. Among such innovative materials, nanostructures have emerged as an important class of materials that can be used to realize efficient photovoltaic devices. When these systems are implemented into solar cells, new effects can be exploited to maximize the harvest
  • of carrier multiplication decay dynamics by analyzing systems of isolated and coupled silicon nanocrystals. The effects on carrier multiplication dynamics by energy and charge transfer processes are also discussed. Keywords: carrier multiplication; nanocrystals; silicon; solar cells; Introduction
  • conversion in PV devices, one important requirement is that the full energy of the solar spectrum is used. In this context, the development of third generation nanostructured solar cells appears as a promising way to realize new systems that can overcome the limitations of traditional, single junction PV
PDF
Album
Full Research Paper
Published 02 Feb 2015

Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite

  • Ilka Kriegel and
  • Francesco Scotognella

Beilstein J. Nanotechnol. 2015, 6, 193–200, doi:10.3762/bjnano.6.18

Graphical Abstract
  • exploited in several types of devices, such as distributed feedback lasers [11][12][13][14][15], sensors [16][17], absorption enhancement for photovoltaics [18] or in dye-sensitized solar cells [19][20][21]. Furthermore, nanoparticle-based photonic crystals have been employed for switching applications [22
PDF
Album
Supp Info
Full Research Paper
Published 16 Jan 2015

Bright photoluminescence from ordered arrays of SiGe nanowires grown on Si(111)

  • D. J. Lockwood,
  • N. L. Rowell,
  • A. Benkouider,
  • A. Ronda,
  • L. Favre and
  • I. Berbezier

Beilstein J. Nanotechnol. 2014, 5, 2498–2504, doi:10.3762/bjnano.5.259

Graphical Abstract
  • fabrication of various NWs for applications such as photovoltaic tandem solar cells has been enabled [10][11][12]. Most of the device specifications require a low cost fabrication process with good control over the NW reproducibility and uniformity [13]. A variety of different NW growth methods have been
PDF
Album
Full Research Paper
Published 30 Dec 2014
Other Beilstein-Institut Open Science Activities