Search results

Search for "thin-film" in Full Text gives 494 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanostructure-induced performance degradation of WO3·nH2O for energy conversion and storage devices

  • Zhenyin Hai,
  • Mohammad Karbalaei Akbari,
  • Zihan Wei,
  • Danfeng Cui,
  • Chenyang Xue,
  • Hongyan Xu,
  • Philippe M. Heynderickx,
  • Francis Verpoort and
  • Serge Zhuiykov

Beilstein J. Nanotechnol. 2018, 9, 2845–2854, doi:10.3762/bjnano.9.265

Graphical Abstract
  • support the performance degradation. Specifically, the nanostructured flower-like balls and the nanosheets in the samples synthesized at 80 °C seem to be glued together in Figure 7a, forming a thin film-like structure as indicated in the inset of Figure 7a, which could be a result of strong reaction
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2018

Near-infrared light harvesting of upconverting NaYF4:Yb3+/Er3+-based amorphous silicon solar cells investigated by an optical filter

  • Daiming Liu,
  • Qingkang Wang and
  • Qing Wang

Beilstein J. Nanotechnol. 2018, 9, 2788–2793, doi:10.3762/bjnano.9.260

Graphical Abstract
  • Daiming Liu Qingkang Wang Qing Wang College of Physics and Lab of New Fibre Materials and Modern Textile Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, P.R. China Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic
  • light seriously restricts the photoelectric conversion efficiency of hydrogenated amorphous silicon (a-Si:H) thin film solar cells. Spectral upconversion is of great significance in reducing the wastage. Herein, the upconverting compound NaYF4:Yb3+/Er3+ was synthesized via a hydrothermal method. SEM and
  • cells, the hydrogenated amorphous silicon (a-Si:H) thin-film solar cell is one of the most promising candidates due to its high inherent absorption coefficient, short charge-carrier diffusion length and low production cost [1]. Films of a-Si:H with a wide bandgap of ca. 1.75 eV have a high absorption in
PDF
Album
Full Research Paper
Published 31 Oct 2018

Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules

  • Naoual Allali,
  • Veronika Urbanova,
  • Mathieu Etienne,
  • Xavier Devaux,
  • Martine Mallet,
  • Brigitte Vigolo,
  • Jean-Joseph Adjizian,
  • Chris P. Ewels,
  • Sven Oberg,
  • Alexander V. Soldatov,
  • Edward McRae,
  • Yves Fort,
  • Manuel Dossot and
  • Victor Mamane

Beilstein J. Nanotechnol. 2018, 9, 2750–2762, doi:10.3762/bjnano.9.257

Graphical Abstract
  • deposited onto the GCE surface to obtain a stable thin film after drying. Chitosan films containing either diaphorase (DI) or glucose dehydrogenase (GDH) and DI were prepared by mixing 10 µL of 0.5 wt % chitosan solution with 5 µL of DI (5 mg·mL−1) or 15 µL of 0.5 wt % chitosan with 10 µL of GDH (1000 U·mL
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2018

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • substrates beaded with ZnO nanoparticles [25]. This effect was demonstrated at 0.780 µm with femtosecond pulses. Ahmad et al. employed ZnO nanoparticles in a polymer thin film as a SA for an Er fiber laser. The absorption saturation experiment performed at 1.560 µm revealed a saturation intensity as low as
  • compared to the SWCNT-SAs, while the latter are less attractive since they are deposited in the form of a polymer thin film. For the Tm laser, the best output characteristics are again achieved with the SWCNT-SA. The PQS performance of the ZnO NRs is better than other 2D materials (graphene-SA with a
PDF
Album
Full Research Paper
Published 23 Oct 2018

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • .9.252 Abstract Molybdenum (Mo) is the most commonly used material as back contact in thin-film solar cells. Adhesion of Mo film to soda–lime glass (SLG) substrate is crucial to the performance of solar cells. In this study, an optimized bilayer structure made of a thin layer of Mo on an ultra-thin
  • chromium (Cr) adhesion layer is used as the back contact for a copper zinc tin sulfide (CZTS) thin-film solar cell on a SLG substrate. DC magnetron sputtering is used for deposition of Mo and Cr films. The conductivity of Mo/Cr bilayer films, their microstructure and surface morphology are studied at
  • the back contact thickness to 600 nm. That is two thirds to half of the thickness that is currently being used for bilayer and single layer back contact for thin-film solar cells. We demonstrate the excellent properties of Mo/Cr bilayer as back contact of a CZTS solar cell. Keywords: back contact
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Au–Si plasmonic platforms: synthesis, structure and FDTD simulations

  • Anna Gapska,
  • Marcin Łapiński,
  • Paweł Syty,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2018, 9, 2599–2608, doi:10.3762/bjnano.9.241

Graphical Abstract
  • place also in our samples. On the other hand, many defects are already created when a thin film of metal is deposited on the Si(111) surface, so heterogeneous dewetting must be also considered. During the formation of nanostructures from thin metallic films, it is necessary to take into account, in
  • between them can be different. In turn, this can be a driving force for the dewetting process [15][22]. XPS was used to determine the valence state of Au films and Au nanostructures. The Au 4f doublet of the 2.8 nm thin film after annealing at 550 °C for 15 min is presented in Figure 8. For comparison the
  • nanostructures the shift of binding energy is also observed. Also a small asymmetry of the 4f7/2 peak can be noticed on its higher-energy side. However there is no difference between the spectra of nanostructures and thin film. In the XPS results only the states corresponding to metallic gold are observed. The
PDF
Album
Full Research Paper
Published 28 Sep 2018
Graphical Abstract
  • and illumination stress (NBIS)-induced instability in amorphous InGaZnO thin-film transistors (a-IGZO TFTs) with various active layer thicknesses (TIGZO) were investigated. The photoleakage current was found to gradually increase in a-IGZO TFTs irrespective of the TIGZO when the photon energy of
  • . Keywords: active layer thickness; gate bias; illumination stress; InGaZnO; photoleakage current; thin-film transistors; Introduction Over the last decade, the amorphous oxide-based semiconductor thin-film transistors (AOS TFTs) have attracted global attention for use in advanced display technologies due
PDF
Album
Full Research Paper
Published 26 Sep 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • nanostructures in the form of thin film, membrane, fibre and hybrid materials under UV and visible light irradiation. Nanocellulose–metal oxide (TiO2, ZnO, graphene oxide, and Fe2O3) composites have been used as photocatalysts to improve the degradation rate of organic pollutants as compared to individual
  • in recycling and reuse. However, a rigid cellulose matrix has been recruited for its three-dimensional porous structure to act as a catalyst support and prevent the aggregation and growth of nanoparticles [120]. The application of a nanocellulose-based thin film and membrane showed great potential in
  • ]. Mohamed et al. [121] reported that the optical properties of a transparent nanocellulose/TiO2 hybrid thin film were imperative for the UV or visible light irradiation. This led to the enhancement of the electron distribution and transfer to the surface of metal oxide. Consequently, the recombination rate
PDF
Album
Review
Published 19 Sep 2018

ZnO-nanostructure-based electrochemical sensor: Effect of nanostructure morphology on the sensing of heavy metal ions

  • Marina Krasovska,
  • Vjaceslavs Gerbreders,
  • Irena Mihailova,
  • Andrejs Ogurcovs,
  • Eriks Sledevskis,
  • Andrejs Gerbreders and
  • Pavels Sarajevs

Beilstein J. Nanotechnol. 2018, 9, 2421–2431, doi:10.3762/bjnano.9.227

Graphical Abstract
  • carried out with the LAB18 thin film deposition system (Kurt J. Lesker, USA) in DC magnetron sputtering mode. As a result, a set of electrodes consisted of four mutually separated planar elements, as illustrated in Figure 1. All of the manipulations described below were carried out using a metal mask
PDF
Album
Full Research Paper
Published 11 Sep 2018

High-throughput micro-nanostructuring by microdroplet inkjet printing

  • Hendrikje R. Neumann and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2018, 9, 2372–2380, doi:10.3762/bjnano.9.222

Graphical Abstract
  • the droplet diameter on freestanding NiTi foil and the 200 nm thick sputtered NiTi thin film varies between 55 and 65 µm. These were the smallest possible diameters that could be generated with our setup. The maximum size of the droplets depends on the maximum droplet volume, which can be up to 10 pL
  • diameters on the 50 µm thick free-standing NiTi sample: about 50% of the droplets have a diameter between 49 to 70 µm. For the sputtered NiTi thin film, the droplet diameters have a narrower distribution around the mean value of 63 µm, but the distribution has long tails, as shown by the upper whisker
  • result of the distinct arrangement of the gold nanodots in the texture-induced grooves on these samples. The distribution for the sputtered NiTi thin film differs from the other samples. The mean NND here is about 27 nm and 50% of the data set for this sample has a small variation of 10 nm. However, the
PDF
Album
Full Research Paper
Published 04 Sep 2018

Magnetism and magnetoresistance of single Ni–Cu alloy nanowires

  • Andreea Costas,
  • Camelia Florica,
  • Elena Matei,
  • Maria Eugenia Toimil-Molares,
  • Ionel Stavarache,
  • Andrei Kuncser,
  • Victor Kuncser and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2018, 9, 2345–2355, doi:10.3762/bjnano.9.219

Graphical Abstract
  • temperature of 50 °C. The working electrode, a thin film (50 nm) of Au, was sputtered on one side of the polycarbonate membrane and was subsequently electrochemically thickened with a thin layer of Cu (10 µm). The electrodeposition was made using a modified Watts bath containing: 225 g·L−1 NiSO4, 2 g·L−1
  • electrode potential than Ni. Electrodeposition was performed using a potentiostat/galvanostat (PARSTAT 2276) controlled by a PC and employing a typical three-electrode configuration: a platinum foil of 1 cm2 (counter electrode), a thin film of Au covering one side of the polycarbonate membrane (working
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2018

Block copolymers for designing nanostructured porous coatings

  • Roberto Nisticò

Beilstein J. Nanotechnol. 2018, 9, 2332–2344, doi:10.3762/bjnano.9.218

Graphical Abstract
  • polymeric blocks are linked via metal–ligand complexes) [63]. In this particular case, the approach consists of firstly, the self-assembly of the metallo-supramolecular block copolymer, forming a well-ordered thin film, and secondly, the opening of the metallo-complex via redox reaction, extracting the PEO
  • control the orientation of the PEO cylindrical domains within the PS thin film [89][90]. In particular, at high humidity conditions, it has been found that PEO cylindrical domains are vertically (perpendicular) oriented with respect to the thin film surface, whereas at low humidity conditions, the PEO
  • centered spheres; CPS: closed-packed spheres; and DIS: disordered. Schematic representation of the solvent evaporation in a thin film made by block copolymer. At the surface, the concentration of the solvent is low and the copolymer undergoes a well-ordered microphase separation. A gradient in the
PDF
Album
Review
Published 29 Aug 2018

Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells

  • Ziga Lokar,
  • Benjamin Lipovsek,
  • Marko Topic and
  • Janez Krc

Beilstein J. Nanotechnol. 2018, 9, 2315–2329, doi:10.3762/bjnano.9.216

Graphical Abstract
  • modeling techniques have been used in simulations of solar cells [11][12][13][14], and among them, rigorous coupled-wave analysis (RCWA) has been employed for the optical simulation of thin film or wafer-based solar cells with various textures [2][3][15][16][17]. However, its applicability, limitations and
  • ][29], which was previously tested and experimentally verified on different solar cell structures, including thick macrotextured layers (RT simulation) and thin-film layers (TMM simulation). Whereas RCWA is used for detailed description of optical situation in thin nanometer-textured stacks, raytracing
  • ) properties at the front interfaces, compared to the flat structure in this case. For wavelengths in the range 500–800 nm, the optimized front thin film stack serves as an efficient AR coating already in the flat device, so the addition of nanotexture does not improve the results much further in this
PDF
Album
Full Research Paper
Published 28 Aug 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • have been employed as nanometer-thin-film light harvesters, such as Cu(Ga)InS(Se)2 or CdTe, showing a light conversion efficiency of up to 21% [1][2]. Progress in dye-sensitized solar cells (reaching ≈12% efficiency [1][2]) has stimulated attempts in using metal chalcogenide nanocrystals (NCs) as
PDF
Album
Review
Published 21 Aug 2018

Influence of the thickness of an antiferromagnetic IrMn layer on the static and dynamic magnetization of weakly coupled CoFeB/IrMn/CoFeB trilayers

  • Deepika Jhajhria,
  • Dinesh K. Pandya and
  • Sujeet Chaudhary

Beilstein J. Nanotechnol. 2018, 9, 2198–2208, doi:10.3762/bjnano.9.206

Graphical Abstract
  • Deepika Jhajhria Dinesh K. Pandya Sujeet Chaudhary Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India 10.3762/bjnano.9.206 Abstract The static and dynamic magnetization response of the CoFeB/IrMn/CoFeB trilayer system with varying thickness
PDF
Album
Full Research Paper
Published 20 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • shown in Figure 1. A nanofiber film has a surface area approximately twice that of a continuous thin film. This property means that nanofibers are excellent candidates for gas sensing applications. Moreover, nanofibers derived from a variety of materials, such as polymers, metals, metal-oxides and
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Light–Matter interactions on the nanoscale

  • Mohsen Rahmani and
  • Chennupati Jagadish

Beilstein J. Nanotechnol. 2018, 9, 2125–2127, doi:10.3762/bjnano.9.201

Graphical Abstract
  • century. Laser processing of thin-film multilayer structures has been one of the initial research directions in photonics [2]. This technique has been employed for many applications, including but not limited to the fabrication of polycrystalline silicon (poly-Si) thin-film transistors or MEMS/NEMS
PDF
Editorial
Published 10 Aug 2018

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • absorption coefficient of a thin-film is measured over several orders of magnitude [52][53] which cannot be achieved by standard transmission–reflection measurements using an UV–vis photospectrometer. The large dynamic range of PDS makes it a powerful tool for to study the density of states in the sub
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa

  • Birgit Lengerer,
  • Marie Bonneel,
  • Mathilde Lefevre,
  • Elise Hennebert,
  • Philippe Leclère,
  • Emmanuel Gosselin,
  • Peter Ladurner and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2018, 9, 2071–2086, doi:10.3762/bjnano.9.196

Graphical Abstract
  • glass slides. The crystal violet staining corroborated the footprint structure described in previous sections (Figure 7A1). While the meshwork was always labelled with crystal violet, the thin film appeared not or weakly stained, varying between different areas of the footprints (Figure 7A2). From all
  • tested 24 lectins, only ConA reacted strongly to fresh and paraformaldehyde (PFA)-fixed footprints (Figure 7B1). Both layers, the thin film and the meshwork, were equally strongly labelled. To visualize the meshwork, a confocal z-projection at the level of the meshwork was made (Figure 7B2). All other 23
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2018

Nanoconjugates of a calixresorcinarene derivative with methoxy poly(ethylene glycol) fragments for drug encapsulation

  • Alina M. Ermakova,
  • Julia E. Morozova,
  • Yana V. Shalaeva,
  • Victor V. Syakaev,
  • Aidar T. Gubaidullin,
  • Alexandra D. Voloshina,
  • Vladimir V. Zobov,
  • Irek R. Nizameev,
  • Olga B. Bazanova,
  • Igor S. Antipin and
  • Alexander I. Konovalov

Beilstein J. Nanotechnol. 2018, 9, 2057–2070, doi:10.3762/bjnano.9.195

Graphical Abstract
  • macrocycle, the hydrophobic effect with its alkyl substituents and hydrogen, and donor–acceptor bonds with its polyethyleneoxy groups. The encapsulation was performed through thin-film hydration (also called evaporation method) or through solubilisation. Thin-film hydration means that ethanol solutions of
  • of 3 (370 nm) compared to the mPEG-550 solution (362 nm) means a more hydrophobic microenvironment of the substrate in the macrocycle micelles [35]. The encapsulation of these substrates through thin-film hydration showed that the encapsulation efficiency (EE) of more hydrophobic Orange OT is a
  • carried out by using thin-film hydration. The particle size distribution of 3 significantly changes in the presence of Dox: The averaged size of small particles increases from 8 to 16 nm and large particles disappear, which leads to a decrease of the PDI value (Figure S11a, Table S1, Supporting
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2018

High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography

  • Kahraman Keskinbora,
  • Umut Tunca Sanli,
  • Margarita Baluktsian,
  • Corinne Grévent,
  • Markus Weigand and
  • Gisela Schütz

Beilstein J. Nanotechnol. 2018, 9, 2049–2056, doi:10.3762/bjnano.9.194

Graphical Abstract
  • applied to the fabrication of an array of FZPs with similar properties and its future applications are presented. Results and Discussion Ion beam lithography The general fabrication route is summarized in Figure 1a and follows the deposition of a thin film lens material (Au in this case) onto an X-ray
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2018

A variable probe pitch micro-Hall effect method

  • Maria-Louise Witthøft,
  • Frederik W. Østerberg,
  • Janusz Bogdanowicz,
  • Rong Lin,
  • Henrik H. Henrichsen,
  • Ole Hansen and
  • Dirch H. Petersen

Beilstein J. Nanotechnol. 2018, 9, 2032–2039, doi:10.3762/bjnano.9.192

Graphical Abstract
  • materials characterization, conventional metrology for thin-film characterization still plays an important role in development of materials used in nanoelectronics [1]. Hall effect measurements have been employed for decades to electrically characterize samples and extract important metrics, such as
PDF
Album
Full Research Paper
Published 20 Jul 2018

Quantitative comparison of wideband low-latency phase-locked loop circuit designs for high-speed frequency modulation atomic force microscopy

  • Kazuki Miyata and
  • Takeshi Fukuma

Beilstein J. Nanotechnol. 2018, 9, 1844–1855, doi:10.3762/bjnano.9.176

Graphical Abstract
  • atomistic mechanisms of various interfacial phenomena, including thin-film formation, crystal growth and dissolution, metal corrosion, and catalytic reactions in vacuum and in liquids. This problem could be solved by enhancing the FM-AFM operation speed. The development of high-speed FM-AFM requires
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2018

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • investigate the influence of the operation method in Kelvin probe force microscopy (KPFM) on the measured potential distribution. KPFM is widely used to map the nanoscale potential distribution in operating devices, e.g., in thin film transistors or on cross sections of functional solar cells. Quantitative
  • modulation (AM) and frequency modulation (FM) KPFM methods on a reference structure consisting of an interdigitated electrode array. This structure mimics the sample geometry in device measurements, e.g., on thin film transistors or on solar cell cross sections. In particular, we investigate how quantitative
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • including many sensor and solar cell designs. For thin film solar cells such as CdTe, the open-circuit voltage and short-circuit current are especially critical performance indicators, often varying between and even within individual grains. A new method for directly mapping the open-circuit voltage
  • performance; solar cell; tomographic AFM; Introduction Cadmium Telluride (CdTe) is an inexpensive thin-film photovoltaic with ca. 5% of the 2017 global market share for solar cells. To optimize the efficiency and reliability of these, or any electronic devices, a thorough understanding of their composition
  • , microstructure, and performance is necessary as a function of device design, processing, and in-service conditions. Atomic force microscopy (AFM) has been a valuable tool for such characterization, especially of materials properties and device performance at the nanoscale. In the case of thin-film solar cells
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018
Other Beilstein-Institut Open Science Activities