Search results

Search for "CNS diseases" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • small or large molecules from the current literature, we highlight the preclinical studies and their results to prove the strategies’ success and limitations. Keywords: antibody delivery; biopharmaceutical delivery; blood–brain barrier (BBB); CNS diseases; drug delivery; hybrid nanoparticles
  • the brain controls most of the functions in the body, the spinal cord carries messages from the brain to the other parts of the body [1]. Like other systems and parts of the human body, the CNS is susceptible to various disorders [2]. CNS diseases are a group of challenging pathological conditions
  • estimated due to neurological diseases [5]. The estimated cost of these diseases to the European healthcare budget is around 800 billion Euros per year [6]. From a pharmaceutical point of view, although there is an immense network of cerebral vascularization, providing therapeutics for CNS diseases is
PDF
Album
Review
Published 12 Nov 2024

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • life expectancy worldwide. Moreover, there is still a large number of unmet medical needs concerning the treatment of most central nervous system (CNS) diseases, as it is the case for stroke where treatments are limited to brain reperfusion. No treatments are available to recover the brain areas
  • ). Unfortunately, most drugs cannot pass the BBB through physiological pathways due to the extreme selectivity of the barrier. This restricts systemic therapeutic treatments for most CNS diseases. Different strategies have been suggested to deliver drugs to the brain (Figure 2). First, drugs can be delivered to
  • clinical use for the treatment of CNS diseases, although some clinical trials are currently ongoing. A phase-I trial of anti-EGFR-immunoliposomes loaded with doxorubicin, still recruiting, might provide soon clinical information on the ratio between the concentration of doxorubicin in the cerebro-spinal
PDF
Album
Review
Published 04 Jun 2020

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting

  • Xianping Liu,
  • Chengjuan Du,
  • Haichun Li,
  • Ting Jiang,
  • Zimiao Luo,
  • Zhiqing Pang,
  • Daoying Geng and
  • Jun Zhang

Beilstein J. Nanotechnol. 2019, 10, 1860–1872, doi:10.3762/bjnano.10.181

Graphical Abstract
  • , glioblastoma multiform (GBM) [2][3]. Complete excision of the tumor relies on the accurate preoperative diagnosis and precise intraoperative localization of lesions during surgery. Magnetic resonance (MR) imaging is an essential clinical imaging method for accurate diagnosis of central nervous system (CNS
  • ) diseases, such as glioblastoma [4]. On one hand, given the lack of sensitivity in conventional MR imaging, the development of molecular MR imaging of tumor biomarkers is highly urgent for noninvasive, visual presentation of cancer aggressiveness and guidance of glioblastoma excision [5]. In addition
PDF
Album
Full Research Paper
Published 11 Sep 2019
Other Beilstein-Institut Open Science Activities