Search results

Search for "Fe2O3 nanoparticles" in Full Text gives 21 result(s) in Beilstein Journal of Nanotechnology.

Facile synthesis of Fe-based metal–organic frameworks from Fe2O3 nanoparticles and their application for CO2/N2 separation

  • Van Nhieu Le,
  • Hoai Duc Tran,
  • Minh Tien Nguyen,
  • Hai Bang Truong,
  • Toan Minh Pham and
  • Jinsoo Kim

Beilstein J. Nanotechnol. 2024, 15, 897–908, doi:10.3762/bjnano.15.74

Graphical Abstract
  • 17104, Korea 10.3762/bjnano.15.74 Abstract A facile approach was employed to fabricate MIL-100(Fe) materials from Fe2O3 nanoparticles through a conventional hydrothermal reaction without the presence of HF and HNO3. Effects of trimesic acid content in the reaction system on the quality and CO2/N2
  • . Importantly, this route opens a new approach to utilizing Fe2O3-based waste materials from the iron and steel industry in manufacturing Fe-based MIL-100 materials. Keywords: CO2/N2 separation; Fe2O3 nanoparticles; hydrothermal reaction; IAST-predicted CO2/N2 selectivity; MIL-100(Fe); Introduction Metal
  • selectivity equations are detailed in Supporting Information File 1. Results and Discussion Material characterizations A range of M-100Fe@Fe2O3 samples was prepared from iron oxide (Fe2O3) nanoparticles as precursor with H3BTC as organic linker through a hydrothermal reaction as shown in Figure 1. The H3BTC
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • to biological systems can cause detrimental effects on human health. Sobolewski et al. confirmed the Fe2O3 nanoparticles with sizes between 11.2 and 13.6 nm can lead to oxidative damage and neurotoxicity in the mouse brain [189]. Meanwhile, the rapid clearance of SiNPs from blood depletes plasma
PDF
Album
Review
Published 12 Apr 2024

Mixed oxides with corundum-type structure obtained from recycling can seals as paint pigments: color stability

  • Dienifer F. L. Horsth,
  • Julia de O. Primo,
  • Nayara Balaba,
  • Fauze J. Anaissi and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 467–477, doi:10.3762/bjnano.14.37

Graphical Abstract
  • characteristic of α-Fe2O3 nanoparticles [21]. The same morphology was observed for concentrations of 5 and 20 wt % of coloring ions (Figure S2, Supporting Information File 1). X-ray photoelectron spectroscopy (XPS) The elemental composition of the samples evaluated by the analysis of XPS spectra is shown in
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2023

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • trauma, and epilepsy. Also, glutamate is a potential tumor growth factor. Using radiolabeled ʟ-[14C]glutamate and magnetic fields, we developed an approach for monitoring the biomolecular coating (biocoating) with glutamate of the surface of maghemite (γ-Fe2O3) nanoparticles. The nanoparticles decreased
  • , that is, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and NaH2PO4, decreased the ability of γ-Fe2O3 nanoparticles to form a glutamate biocoating by about 50% and 90%, respectively. Only 15% of the amount of glutamate biocoating obtained in water was obtained in blood plasma. Albumin did
  • not prevent the formation of a glutamate biocoating. It was shown that the glutamate biocoating is a temporal dynamic structure at the surface of γ-Fe2O3 nanoparticles. Also, components of the nerve terminal incubation medium and physiological fluids responsible for the desorption of glutamate were
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • TEM. As shown in Figure 2d, Fe2O3 nanoparticles with a size of about 50 nm are distributed evenly on the CNTs. The high-resolution TEM image (Figure 2e) indicates an interplanar spacing of 0.295 nm, corresponding to the (220) plane of Fe2O3 (JCPDS Card No. 25-1402). The EDX spectrum confirms the
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • Abstract Maghemite (γ-Fe2O3) nanoparticles obtained through co-precipitation and oxidation were coated with heparin (Hep) to yield γ-Fe2O3@Hep, and subsequently with chitosan that was modified with different phenolic compounds, including gallic acid (CS-G), hydroquinone (CS-H), and phloroglucinol (CS-P
  • conjugation via esterification or amidation, and free-radical grafting [16]. The aim of this work was to design and fabricate superparamagnetic iron oxide nanoparticles with antioxidant properties. Positively charged γ-Fe2O3 nanoparticles were synthesized through co-precipitation, and their surface was
  • assays indicated the necessity of using additional methods for the examination of the antioxidant properties. γ-Fe2O3 nanoparticles The advantages of iron oxides in biomedical applications include biocompatibility, excellent magnetic properties, and the possibility to modify the surface with reactive
PDF
Album
Full Research Paper
Published 20 May 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • . Figure 6 shows the spectra of the iron oxide nanoparticles and iron oxide nanoparticle-decorated nanotubes. These last results correspond to the sample with a 1:1 decoration ratio and calcined for 30 min. As it can be seen, the pattern of the Fe2O3 nanoparticles corresponds to a cubic crystalline
  • (c) and acetone (d). Different decoration densities for different decoration ratios of 1:1 (a), 1:1.3 (b) and 1:1.5 (c). High magnification HRTEM images of MWCNTs decorated with Fe2O3 nanoparticles. The inset shows the electron diffraction pattern (SAED) for the selected area. XPS core level spectra
  • of Fe 2p with a fitting curve for sample C (a), O 1s (b) and C 1s (c) for the samples A (black curve), B (red curve) and C (green curve). The C 1s spectra has been normalized and aligned. XRD pattern for Fe2O3 nanoparticles (a) and decorated CNTs with Fe2O3 nanoparticles (b). Electrical resistance of
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Cytotoxicity of doxorubicin-conjugated poly[N-(2-hydroxypropyl)methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells

  • Zdeněk Plichta,
  • Yulia Kozak,
  • Rostyslav Panchuk,
  • Viktoria Sokolova,
  • Matthias Epple,
  • Lesya Kobylinska,
  • Pavla Jendelová and
  • Daniel Horák

Beilstein J. Nanotechnol. 2018, 9, 2533–2545, doi:10.3762/bjnano.9.236

Graphical Abstract
  • of its actions. Novel approaches are therefore being developed to enhance the anticancer activity of Dox and decrease its side effects. Polymer-coated γ-Fe2O3 nanoparticles conjugate to Dox seem to be the most promising candidate for the role of such agents to achieve a high specificity and low side
  • γ-Fe2O3 with PHPMA and P(HPMA-MMAA)-Dox First, PHPMA was prepared by precipitation polymerization and used as a coating of γ-Fe2O3 nanoparticles. Briefly, in an 100 mL Erlenmeyer flask, HPMA (2 g) freshly crystalized from ethyl acetate and AIBN (10 mg) were dissolved in ethyl acetate (18 mL) under
  • studies of Dox-conjugated polymer-coated γ-Fe2O3 nanoparticles by primary cells (hMSCs) and human tumor cells (MG-63 and HeLa) were carried out as follows. The cells were incubated with appropriate amounts of the particle colloids for 48 h and washed with PBS three times to remove dissolved compounds not
PDF
Album
Full Research Paper
Published 25 Sep 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • easier reduction activity. Other reports by Chen et al. [87][88] reveal that the reduction of Fe2O3 nanoparticles, which are located inside the cavity, occur at 600 °C while the reduction of the outer surface of the MWCNTs occur at 800 °C. Therefore, the difference in reduction activity may be associated
PDF
Review
Published 27 Feb 2018

Systematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes

  • Nan Shen,
  • Miriam Keppeler,
  • Barbara Stiaszny,
  • Holger Hain,
  • Filippo Maglia and
  • Madhavi Srinivasan

Beilstein J. Nanotechnol. 2017, 8, 2032–2044, doi:10.3762/bjnano.8.204

Graphical Abstract
  • hydrothermal synthesis of α-Fe2O3 nanoparticles is seen as beneficial, being a low-cost and time-efficient combination of an efficient SCA and a powerful synthesis tool. The resulting α-Fe2O3 is free from nitrogen (elemental analysis) [28], since the applied diamine derivatives are normally water-soluble and
  • electrochemical performance in LIBs [17]. Also, ethylenediamine is used in the hydrothermal synthesis of α-Fe2O3 nanoparticles, leading to a shuttle-like nanorod morphology [27]. Diamines increase the pH of the reaction mixture, supporting the phase transformation of FeOOH to α-Fe2O3. In addition, diamines form
  • Figure 8c. Exceptional cycling stability at around 1000 mAh g−1 for 50 cycles was observed. In particular, samples with intermediate rod lengths (α-Fe2O3-E1.5, α-Fe2O3-D0.5 and α-Fe2O3-B1.5) in the range of ≈240 nm up to ≈280 nm show a higher capacity over spherical α-Fe2O3 nanoparticles (α-Fe2O3-E0.5
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2017

Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

  • Guoliang Gao,
  • Yan Jin,
  • Qun Zeng,
  • Deyu Wang and
  • Cai Shen

Beilstein J. Nanotechnol. 2017, 8, 649–656, doi:10.3762/bjnano.8.69

Graphical Abstract
  • . of composite materials. In this method, an Fe-based metal organic framework [MIL-88B (Fe)] was used as a precursor for the synthesis of spindle-like α-Fe2O3 nanoparticles with a mesoporous structure of less than 20 nm. When used as anode material for LIBs, these nanoparticles demonstrated a capacity
  • preparation methods. Yu et al. [26] successfully embedded Fe2O3 nanoparticles inside CNTs, which reduced the volume change of Fe2O3 nanoparticles during charge/discharge. A highly reversible conversion reaction between Fe0 and Fe3+ (Fe2O3) during lithiation/delithiation can also be observed. The synthesized
  • -MWCNT composites and COOH-MWCNT. All peaks of Fe2O3 can be assigned to rhombohedral α-Fe2O3 (JCPDS No. 33-0664), indicating the well-crystalline structure of the as-prepared Fe2O3 nanoparticles. The black spectrum refers to carbon nanotubes, and the peak at 26° is the characteristic peak of carbon
PDF
Album
Full Research Paper
Published 17 Mar 2017

Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

  • Andreea Laura Chibac,
  • Tinca Buruiana,
  • Violeta Melinte and
  • Emil C. Buruiana

Beilstein J. Nanotechnol. 2017, 8, 272–286, doi:10.3762/bjnano.8.30

Graphical Abstract
  • with maghemite nanoparticles (TiO2/Fe2O3) The maghemite (γ-Fe2O3) nanoparticles were synthesized according to a previously published protocol [58]. Thus, 0.025 g Fe2O3 nanoparticles, calculated on the assumption that the amount of maghemite NPs to be of 1 wt % relatively to the resulting TiO2 particles
  • acetic acid and water, along with the 2.33:1 molar ratio of TTIP:TEOS were kept, and 1 wt % Fe2O3 nanoparticles were added. The resulted gel was dried at 100 °C and the finely crushed sample was calcined at 500 °C for 5 h. Synthesis of photopolymerizable urethane dimethacrylate oligomer PTHF-UDMA For the
PDF
Album
Full Research Paper
Published 27 Jan 2017

Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles

  • Igor M. Pongrac,
  • Marina Dobrivojević,
  • Lada Brkić Ahmed,
  • Michal Babič,
  • Miroslav Šlouf,
  • Daniel Horák and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 926–936, doi:10.3762/bjnano.7.84

Graphical Abstract
  • efficiency, cellular viability, cytotoxicity, behavior after labeling, and the mechanism of internalization was determined and compared. Results Characterization of the nanoparticle morphology To compare the morphology of PLL-γ-Fe2O3 nanoparticles with commercially available nanomag®-D-spio particles
  • , transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used (Figure 1, Table 1). The average size of the PLL-γ-Fe2O3 nanoparticles (Figure 1A) was larger than that of nanomag®-D-spio nanoparticles (Figure 1B). The latter particles had a broader particle size distribution due to presence
  • ± 1.73)% (4 mg/mL; Figure 3). Similarly to Prussian blue staining, efficient labeling of PLL-γ-Fe2O3 nanoparticles was reached at the considerably lower concentration (0.2 mg/mL) compared with nanomag®-D-spio (4.0 mg/mL). Proliferation and viability To define if the nanoparticle labeling had any negative
PDF
Album
Full Research Paper
Published 27 Jun 2016

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • formation of the iron oxide component. Wu et al. pointed out that a thiol passivation of the surface is crucial for retaining the Janus character due to the two different surfaces [38]. This was demonstrated by complete encapsulation of Au@Fe3O4 as well as Ag@Fe2O3 nanoparticles with a silica shell [103
PDF
Album
Review
Published 05 Dec 2014

Biopolymer colloids for controlling and templating inorganic synthesis

  • Laura C. Preiss,
  • Katharina Landfester and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2014, 5, 2129–2138, doi:10.3762/bjnano.5.222

Graphical Abstract
  • . [5] prepared chitosan/silica composite microspheres by mixing an aqueous solution of the biopolymer with commercial nanosized silica particles. The obtained microparticles were dried afterwards. In further examples, chitosan matrices have also been used to immobilize CdSe quantum dots [6] and γ-Fe2O3
  • nanoparticles [7]. In a different approach, biopolymers can also be applied to modify surfaces and induce the deposition of nanoparticles. For instance, Nochomovitz et al. [8] described the deposition and patterning of gold colloidal nanoparticles and carbon nanotubes on surfaces previously modified with
PDF
Album
Review
Published 17 Nov 2014

Influence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells

  • Michal Babič,
  • Daniel Horák,
  • Lyubov L. Lukash,
  • Tetiana A. Ruban,
  • Yurii N. Kolomiets,
  • Svitlana P. Shpylova and
  • Oksana A. Grypych

Beilstein J. Nanotechnol. 2014, 5, 1732–1737, doi:10.3762/bjnano.5.183

Graphical Abstract
  • Molecular Biology and Genetics, NAS of Ukraine, Zabolotnogo 150, 03143 Kiev, Ukraine 10.3762/bjnano.5.183 Abstract Surface-modified maghemite (γ-Fe2O3) nanoparticles were obtained by using a conventional precipitation method and coated with D-mannose and poly(N,N-dimethylacrylamide). Both the initial and
  • modified Eagle’s medium (DMEM) was from PAA Laboratories (Pasching, Austria). Non-coated, D-mannose- and poly(N,N-dimethylacrylamide)-coated γ-Fe2O3 nanoparticles (4.4 mg/mL) were prepared through coprecipitation of FeCl2 and FeCl3 solutions with ammonia, the subsequent oxidation of the resulting product
  • scanning microscope (Carl Zeiss Oberkochen, Germany). Results and Discussion Surface-modified γ-Fe2O3 particles In this report, non-coated γ-Fe2O3 nanoparticles served both as a control and as a core for post-synthesis coating with D-mannose and PDMAAm. TEM images of the synthesized magnetic particles did
PDF
Album
Full Research Paper
Published 08 Oct 2014

Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

  • Tatiana Borisova,
  • Natalia Krisanova,
  • Arsenii Borуsov,
  • Roman Sivko,
  • Ludmila Ostapchenko,
  • Michal Babic and
  • Daniel Horak

Beilstein J. Nanotechnol. 2014, 5, 778–788, doi:10.3762/bjnano.5.90

Graphical Abstract
  • in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key
  • characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[14C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na+-dependent uptake, tonic release and the extracellular level of L-[14C]glutamate in isolated rat brain nerve terminals
  • (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange
PDF
Album
Full Research Paper
Published 04 Jun 2014

Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNOx-SCR

  • Thomas Simons and
  • Ulrich Simon

Beilstein J. Nanotechnol. 2012, 3, 667–673, doi:10.3762/bjnano.3.76

Graphical Abstract
  • and EDX. Also the metal loading of the iron-containing material was quantified by EDX and XRF to be 4 wt % in agreement with the manufacturer’s data. According to the manufacturer the iron species are predominantly Fe2O3 nanoparticles (corresponding to the reddish colour of the material). However, the
PDF
Album
Letter
Published 26 Sep 2012

Magnetic interactions between nanoparticles

  • Steen Mørup,
  • Mikkel Fougt Hansen and
  • Cathrine Frandsen

Beilstein J. Nanotechnol. 2010, 1, 182–190, doi:10.3762/bjnano.1.22

Graphical Abstract
  • , however, remarkable that weak dipole interactions can result in faster superparamagnetic relaxation. This has been observed in Mössbauer studies of maghemite (γ-Fe2O3) nanoparticles [12][28], and the effect has been explained by a lowering of the energy barriers between the two minima of the magnetic
  • neighboring particles [35][36][37][38]. As an example, Figure 3 shows Mössbauer spectra of chemically prepared 8 nm hematite (α-Fe2O3) nanoparticles [36]. The spectra in Figure 3a were obtained from particles, which were coated with phosphate in order to minimize inter-particle interactions. The spectra in
  • permission from Xu, M.; Bahl, C. R. H.; Frandsen, C.; Mørup, S. Inter-particle interactions in agglomerates of α-Fe2O3 nanoparticles: Influence of grinding, J. Colloid Interface Science 2004, 279 132–136. Copyright (2004) by Elsevier. (a) The quadrupole shift of coated (open circles) and uncoated (solid
PDF
Album
Review
Published 28 Dec 2010

Magnetic coupling mechanisms in particle/thin film composite systems

  • Giovanni A. Badini Confalonieri,
  • Philipp Szary,
  • Durgamadhab Mishra,
  • Maria J. Benitez,
  • Mathias Feyen,
  • An Hui Lu,
  • Leonardo Agudo,
  • Gunther Eggeler,
  • Oleg Petracic and
  • Hartmut Zabel

Beilstein J. Nanotechnol. 2010, 1, 101–107, doi:10.3762/bjnano.1.12

Graphical Abstract
  • Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany Institut für Werkstoffe, Ruhr-Universität Bochum, D-44780 Bochum, Germany 10.3762/bjnano.1.12 Abstract Magnetic γ-Fe2O3 nanoparticles with a mean diameter of 20 nm and size distribution of 7% were chemically synthesized and spin-coated on top of a Si
PDF
Album
Full Research Paper
Published 01 Dec 2010

Uniform excitations in magnetic nanoparticles

  • Steen Mørup,
  • Cathrine Frandsen and
  • Mikkel Fougt Hansen

Beilstein J. Nanotechnol. 2010, 1, 48–54, doi:10.3762/bjnano.1.6

Graphical Abstract
  • from a sample of 15 nm α-Fe2O3 nanoparticles. The data were obtained from neutrons, scattered at the scattering vector with Q = 1.50 Å−1, corresponding to the purely magnetic hexagonal (101) peak [21]. Data obtained in zero applied field as a function of temperature are shown in Figure 6a, whereas
PDF
Album
Review
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities