Search results

Search for "X-ray diffraction" in Full Text gives 551 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

High-temperature epitaxial growth of tantalum nitride thin films on MgO: structural evolution and potential for SQUID applications

  • Michelle Cedillo Rosillo,
  • Oscar Contreras López,
  • Jesús Antonio Díaz,
  • Agustín Conde Gallardo and
  • Harvi A. Castillo Cuero

Beilstein J. Nanotechnol. 2025, 16, 690–699, doi:10.3762/bjnano.16.53

Graphical Abstract
  • using pulsed laser deposition (PLD). This research investigates the influence of varying deposition parameters, including substrate temperature and ambient gas composition, on the structural, morphological, and superconducting properties of the films. X-ray photoelectron spectroscopy, X-ray diffraction
  • dynamics and superconducting characteristics of the films. X-ray diffraction (XRD) analysis revealed that the TaN thin films exhibited excellent crystallinity, with sharp diffraction peaks indicating well-defined structural phases. The deposition process was optimized by systematically adjusting substrate
PDF
Album
Full Research Paper
Published 22 May 2025

Aprepitant-loaded solid lipid nanoparticles: a novel approach to enhance oral bioavailability

  • Mazhar Hussain,
  • Muhammad Farooq,
  • Muhammad Asad Saeed,
  • Muhammad Ijaz,
  • Sherjeel Adnan,
  • Zeeshan Masood,
  • Muhammad Waqas,
  • Wafa Ishaq and
  • Nabeela Ameer

Beilstein J. Nanotechnol. 2025, 16, 652–663, doi:10.3762/bjnano.16.50

Graphical Abstract
  • microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), in vitro drug release in 0.1 M HCl (pH 1.2) and phosphate-buffered saline (PBS, pH 7.4), and pharmacokinetic studies. The optimal formulation (APT-CD-NP4) containing the highest
  • , and zeta potential measurements. Also Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), solubility, in vitro dissolution, and in vivo and stability studies were carried out. Result and Discussion Physicochemical evaluation The solubility of APT in the SLNs was 24-fold higher
  • polymers [19]. X-ray diffraction studies APT, β-CD, poloxamer 407, APT-CD-NP4, and APT-PX-NP8 were evaluated using X-ray diffraction. APT exhibited sharp and intense peaks at diffraction angles (2θ) of 8.98°, 10.64°, 12.47°, 14.67°, 15.42°, 17.13°, 18.89°, 19.48°, 20.81°, 22.78°, and 27.10° (Figure 4b
PDF
Album
Full Research Paper
Published 15 May 2025

Retrieval of B1 phase from high-pressure B2 phase for CdO nanoparticles by electronic excitations in CdxZn1−xO composite thin films

  • Arkaprava Das,
  • Marcin Zając and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2025, 16, 551–560, doi:10.3762/bjnano.16.43

Graphical Abstract
  • irradiated thin films was performed with X-ray diffraction and Raman spectroscopy. Additionally, X-ray absorption near-edge structure (XANES) spectroscopy was conducted at the Zn L3,2 and O K edges for all the thin films. X-ray photoelectron spectroscopy (XPS) on Si 2p and O 1s core levels provided direct
  • film prior to further irradiation. The characterization of the thin films was performed using X-ray diffraction (XRD) on a Bruker high-resolution X-ray diffractometer, employing a Cu Kα beam over a 2θ range of 30–50°. Raman spectroscopic measurements were conducted at room temperature with a SENTERRA
  • mode. Table 1 summarizes the irradiation ion energies and fluences for each thin film, along with their corresponding labels. Results and Discussion Influence of Ag and O ion irradiation on crystallographic phase by X-ray diffraction and Raman spectroscopy Figure 1a shows the XRD patterns illustrating
PDF
Album
Full Research Paper
Published 17 Apr 2025

Zeolite materials with Ni and Co: synthesis and catalytic potential in the selective hydrogenation of citral

  • Inocente Rodríguez-Iznaga,
  • Yailen Costa Marrero,
  • Tania Farias Piñeira,
  • Céline Fontaine,
  • Lexane Paget,
  • Beatriz Concepción Rosabal,
  • Arbelio Penton Madrigal,
  • Vitalii Petranovskii and
  • Gwendoline Lafaye

Beilstein J. Nanotechnol. 2025, 16, 520–529, doi:10.3762/bjnano.16.40

Graphical Abstract
  • nitrogen adsorption at 77 K. The initial natural zeolite samples were also examined via powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD patterns were recorded using a PW 1218 diffractometer (Philips, Almelo, Netherlands) equipped with a curved graphite monochromator and Cu Kα
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • implantation, the stress in the films changed from tensile to compressive, as illustrated in Figure 4. The X-ray diffraction (XRD) peak position shift provides further insight into these stress changes. In as-deposited films, the peaks are shifting to lower 2θ values, signifying an increase in interatomic
PDF
Album
Full Research Paper
Published 01 Apr 2025

Quantification of lead through rod-shaped silver-doped zinc oxide nanoparticles using an electrochemical approach

  • Ravinder Lamba,
  • Gaurav Bhanjana,
  • Neeraj Dilbaghi,
  • Vivek Gupta and
  • Sandeep Kumar

Beilstein J. Nanotechnol. 2025, 16, 422–434, doi:10.3762/bjnano.16.33

Graphical Abstract
  • sensitivity among all. Results and Discussion X-ray diffraction of as-synthesized Ag@ZnO nanorods The Ag@ZnO NRs were analyzed for their crystal phases by evaluating the X-ray diffraction pattern. Figure 1a displays the diffraction pattern of the Ag@ZnO NRs that were formed. It was observed that this pattern
  • expressed as is 0.001275. The total broadening of the peak (βT) caused by the crystalline size and strain in the lattice is given by: where βD is broadening of the peak due to crystal size and βε is broadening due to lattice strain. For analyzing stress and strain resulting from X-ray diffraction
PDF
Album
Full Research Paper
Published 26 Mar 2025

Size control of nanoparticles synthesized by pulsed laser ablation in liquids using donut-shaped beams

  • Abdel Rahman Altakroury,
  • Oleksandr Gatsa,
  • Farbod Riahi,
  • Zongwen Fu,
  • Miroslava Flimelová,
  • Andrei Samokhvalov,
  • Stephan Barcikowski,
  • Carlos Doñate-Buendía,
  • Alexander V. Bulgakov and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 407–417, doi:10.3762/bjnano.16.31

Graphical Abstract
  • crystal structure of the HEA NPs was determined by X-ray diffraction (XRD) using a Smartlab diffractometer (Rigaku, Japan). SEM was used to characterize the nanoparticle size distribution and to determine the beam shape influence while maintaining comparable PLAL parameters for both beams to minimize the
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2025

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • gold nanoparticles) spectral signatures were not observable here. Pulsed laser grafting created nonequilibrium gold nanoparticle–carbon fiber paper composites, evident from powder X-ray diffraction (XRD) data (Figure 5A). We normalized the XRD patterns to the (111) peak and found that the (200) or (311
  • ) using instrument-specific atomic sensitivity factors. X-ray diffraction (XRD) measurements were conducted at the Chemical Analysis Lab at the Rochester Institute of Technology using a Bruker D8 ADVANCE diffractometer with Cu Kα radiation (40 kV and 40 mA). The configuration included a 0.6 mm primary
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • °C, and 600 °C using RF sputtering. The thickness of the films has been found to decrease from 940 nm at room temperature to 200 nm at 600 °C with increasing substrate temperature. The structural investigation using grazing incidence angle X-ray diffraction revealed that films deposited at room
  • ± 0.30 nm for the films deposited at room temperature, 300 °C, 400 °C, 500 °C, and 600 °C, respectively. The structural aspects of the ZnTe/Qz films were analysed using grazing incidence X-ray diffraction (GXRD) on a Bruker AXS D8 Advance with Cu Kα radiation (λ = 1.5406 Å) available at Ion Beam Centre
  • X-ray diffraction studies GXRD patterns of ZnTe films grown on quartz substrates at different substrate temperatures (R.T.–600 °C) are presented in Figure 1. A broad hump in the GXRD pattern of the film deposited at room temperature indicates that the film is amorphous. The three diffraction peaks
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Fabrication and evaluation of BerNPs regarding the growth and development of Streptococcus mutans

  • Tuyen Huu Nguyen,
  • Hong Thanh Pham,
  • Kieu Kim Thanh Nguyen,
  • Loan Hong Ngo,
  • Anh Ngoc Tuan Mai,
  • Thu Hoang Anh Lam,
  • Ngan Thi Kim Phan,
  • Dung Tien Pham,
  • Duong Thuy Hoang,
  • Thuc Dong Nguyen and
  • Lien Thi Xuan Truong

Beilstein J. Nanotechnol. 2025, 16, 308–315, doi:10.3762/bjnano.16.23

Graphical Abstract
  • prepared using a wet-milling method with zirconium balls to enhance bioavailability and expand potential applications. The particle size and physicochemical properties of the BerNPs were analyzed using field-emission scanning electron microscopy (FE-SEM), UV–vis spectroscopy, X-ray diffraction, and Fourier
  • content in the powder material was determined to be 92% by mass. In both raw berberine powder and BerNPs, X-ray diffraction analysis showed strong peaks around 9.5° and weak peaks between 25.5° and 26.5° (Figure 2C). These characteristic diffraction peaks represent the crystalline structure of berberine
  • temperature, and analyzed at a voltage of 10 kV [24]. X-ray diffraction analysis was used to evaluate the crystalline structure of berberine and BerNPs. FTIR spectra were analyzed to identify typical functional groups and chemical bonds in raw berberine and BerNPs [28]. Determination of minimum inhibitory
PDF
Album
Full Research Paper
Published 27 Feb 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • contradictory observation, including reduced crystallinity as evidenced by the X-ray diffraction results and the presence of bound solvent detected through differential scanning calorimetry, which acts as plasticizer in the chitosan/PVA membrane and reduces the storage modulus. Viana et al. [138] conducted DMA
PDF
Album
Review
Published 26 Feb 2025

Synthesis and the impact of hydroxyapatite nanoparticles on the viability and activity of rhizobacteria

  • Bedah Rupaedah,
  • Indrika Novella,
  • Atiek Rostika Noviyanti,
  • Diana Rakhmawaty Eddy,
  • Anna Safarrida,
  • Abdul Hapid,
  • Zhafira Amila Haqqa,
  • Suryana Suryana,
  • Irwan Kurnia and
  • Fathiyah Inayatirrahmi

Beilstein J. Nanotechnol. 2025, 16, 216–228, doi:10.3762/bjnano.16.17

Graphical Abstract
  • gradually through a solvothermal reaction, driven by the chemical transformation represented by the following equation: Nanohydroxyapatite characterization The structural analysis of nHA was performed using X-ray diffraction (XRD). The diffraction pattern of nHA standard is given in Figure 1, while that of
  • Novella and coworkers [26]. Nanohydroxyapatite characterization Structural assessment of the synthesized nHA was conducted using X-ray diffraction (XRD) with the PANalytical AERIS system and OriginLab 8.5.1 software. Further examination of the sample’s morphology was carried out using a scanning electron
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • , and X-ray diffraction (XRD) provide information about the bulk MOF-based MMM [140][141][142]. FTIR yields information about the functional groups within the sample [140], and will differ between the pristine MOF, polymer membrane, and MOF-based MMM [118][121][122][124][128][131]. In this way, it is
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Clays enhanced with niobium: potential in wastewater treatment and reuse as pigment with antibacterial activity

  • Silvia Jaerger,
  • Patricia Appelt,
  • Mario Antônio Alves da Cunha,
  • Fabián Ccahuana Ayma,
  • Ricardo Schneider,
  • Carla Bittencourt and
  • Fauze Jacó Anaissi

Beilstein J. Nanotechnol. 2025, 16, 141–154, doi:10.3762/bjnano.16.13

Graphical Abstract
  • dye with the enzyme succinate dehydrogenase (present in the mitochondria), leading to the formation of a salt called Formazan with a pink-reddish color. Characterization X-ray diffraction (XRD) measurements of the powder were conducted using a Rigaku BEartLab SE 3 kW diffractometer equipped with Cu Kα
  • infections. The appearance of the sample of bentonite: raw bentonite (a); bentonite modified with NbOPO4 (b), and bentonite modified with Nb2O5 (c). X-ray diffraction patterns of the bentonite samples and those modified with niobium oxide (a) and niobium phosphate (b). Schematic representation of bentonite
PDF
Album
Supp Info
Full Research Paper
Published 10 Feb 2025

TiO2 immobilized on 2D mordenite: effect of hydrolysis conditions on structural, textural, and optical characteristics of the nanocomposites

  • Marina G. Shelyapina,
  • Rosario Isidro Yocupicio-Gaxiola,
  • Gleb A. Valkovsky and
  • Vitalii Petranovskii

Beilstein J. Nanotechnol. 2025, 16, 128–140, doi:10.3762/bjnano.16.12

Graphical Abstract
  • -angle and full X-ray diffraction (XRD) patterns, respectively, for the samples containing hydrolyzed forms of Ti after hydrolysis of TEOT. The full XRD patterns of the hydrolyzed samples after calcination are shown in Figure 1c. For comparison, the corresponding patterns for the parent compound MOR-L
  • the Research Park of Saint Petersburg State University (Centre for X-ray Diffraction Studies; Interdisciplinary Resource Centre for Nanotechnology; Centre for Physical Methods of Surface Investigation; Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics
PDF
Album
Full Research Paper
Published 10 Feb 2025

Characterization of ZnO nanoparticles synthesized using probiotic Lactiplantibacillus plantarum GP258

  • Prashantkumar Siddappa Chakra,
  • Aishwarya Banakar,
  • Shriram Narayan Puranik,
  • Vishwas Kaveeshwar,
  • C. R. Ravikumar and
  • Devaraja Gayathri

Beilstein J. Nanotechnol. 2025, 16, 78–89, doi:10.3762/bjnano.16.8

Graphical Abstract
  • characterization using UV–vis spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction measurements, energy-dispersive X-ray spectroscopy, scanning and transmission electron microscopy, photocatalytic studies, electrochemical analysis, and determination of antibacterial and anticancer activity. The
  • . The numbers on the branches represent bootstrap values derived from 1000 replications, showcasing the statistical reliability of each node. The tree was constructed using the maximum likelihood method based on 16S rRNA sequences, with alignment performed against GenBank data. (a) X-ray diffraction
PDF
Album
Full Research Paper
Published 30 Jan 2025

Fabrication of hafnium-based nanoparticles and nanostructures using picosecond laser ablation

  • Abhishek Das,
  • Mangababu Akkanaboina,
  • Jagannath Rathod,
  • R. Sai Prasad Goud,
  • Kanaka Ravi Kumar,
  • Raghu C. Reddy,
  • Ratheesh Ravendran,
  • Katia Vutova,
  • S. V. S. Nageswara Rao and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1639–1653, doi:10.3762/bjnano.15.129

Graphical Abstract
  • . These Hf sponges, cut and polished to 10 mm × 10 mm × 2 mm, were used as ablation targets. The pristine target had the crystal structure of hexagonal HfO0.25, as confirmed by X-ray diffraction (XRD) data (see Figure 1a). The elemental composition (Hf: 73.68%, O: 26.32%) was determined by energy
PDF
Album
Full Research Paper
Published 18 Dec 2024

Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol

  • Akash Kumar,
  • Ridhima Chadha,
  • Abhishek Das,
  • Nandita Maiti and
  • Rayavarapu Raja Gopal

Beilstein J. Nanotechnol. 2024, 15, 1576–1592, doi:10.3762/bjnano.15.124

Graphical Abstract
  • , Netherlands) for a detailed examination of size and morphology. The crystalline structure of ʟ-car-AgNP1 was determined using X-ray diffraction (XRD, Rigaku Smartlab, Japan) within a 2θ range of 35° to 80°. Nanoparticle solutions were air-dried, and the obtained nanopowders (20 mg) were used for measurements
  • absorption peaks indicates that the nanoparticles aggregated. The results confirm that ʟ-car-AgNP2–5 nanoparticles are polydisperse. FTIR, Raman spectroscopy and X-ray diffraction In addition to TEM analysis, the interaction between functional groups of ʟ-carnosine and silver, the elemental composition, and
  • NaCl. In addition, NaOH used in the synthesis process acts as a source of sodium in the EDX spectrum. Crystalline structures of ʟ-car-AgNPs were analyzed using X-ray diffraction. The XRD pattern of one sample representative of all synthesized ʟ-carnosine-capped silver nanospheres is given here (Figure
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2024

Electrochemical nanostructured CuBTC/FeBTC MOF composite sensor for enrofloxacin detection

  • Thi Kim Ngan Nguyen,
  • Tien Dat Doan,
  • Huy Hieu Luu,
  • Hoang Anh Nguyen,
  • Thi Thu Ha Vu,
  • Quang Hai Tran,
  • Ha Tran Nguyen,
  • Thanh Binh Dang,
  • Thi Hai Yen Pham and
  • Mai Ha Hoang

Beilstein J. Nanotechnol. 2024, 15, 1522–1535, doi:10.3762/bjnano.15.120

Graphical Abstract
  • method and characterized using various techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, and X-ray photoelectron spectroscopy. The MOF mixture exhibited a particle size ranging from 40 to 100 nm, a high surface area of 1147 m2/g, a pore
PDF
Album
Full Research Paper
Published 28 Nov 2024

Mn-doped ZnO nanopowders prepared by sol–gel and microwave-assisted sol–gel methods and their photocatalytic properties

  • Cristina Maria Vlăduț,
  • Crina Anastasescu,
  • Silviu Preda,
  • Oana Catalina Mocioiu,
  • Simona Petrescu,
  • Jeanina Pandele-Cusu,
  • Dana Culita,
  • Veronica Bratan,
  • Ioan Balint and
  • Maria Zaharescu

Beilstein J. Nanotechnol. 2024, 15, 1283–1296, doi:10.3762/bjnano.15.104

Graphical Abstract
  • crystallization, consistent with the results from XRD and SEM analyses. Additionally, bands at 3437 and 1613 cm−1 correspond to the vibrational modes of hydroxy groups (OH) bonded to the surface of the ZnO powders. X-ray diffraction The crystalline structure of the samples thermally treated at 500 °C was analyzed
  • using X-ray diffraction (XRD). The resulting XRD patterns, shown in Figure 6a, indicate that the samples are polycrystalline and single-phase. This single phase corresponds well to the data from ICDD file no. 36-1451 of zincite ZnO. ZnO has a wurtzite-type structure and crystallizes in the hexagonal P63
  • 10 and 20 kV in high vacuum mode. X-ray diffraction (XRD) measurements were carried out using an Ultima IV diffractometer (Rigaku Corp., Japan) equipped with parallel beam optics, using Cu Kα radiation (λ = 1.5418 Å) at 40 kV and 30 mA over the 2θ range of 25–80° at a scanning rate of 2°/min with a
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • respective limitations. This study offers new insights into the design of an efficient system for OCM. Results and Discussion Structural and morphological properties For understanding the crystalline structure of TiO2 and SiNWs, X-ray diffraction patterns were recorded as displayed in Figure 1. The XRD
  • properties of as-synthesized samples were analyzed using an X-ray diffraction system (XRD, Rigaku, SmartLab) with a 2θ range of 20–80° and a field-emission scanning electron microscope (FE-SEM, Hitachi, S-4700). The absorption properties of the thin films were analyzed using a diffuse reflectance UV–vis
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Atomistic insights into the morphological dynamics of gold and platinum nanoparticles: MD simulations in vacuum and aqueous media

  • Evangelos Voyiatzis,
  • Eugenia Valsami-Jones and
  • Antreas Afantitis

Beilstein J. Nanotechnol. 2024, 15, 995–1009, doi:10.3762/bjnano.15.81

Graphical Abstract
  • [53]. A combined molecular dynamics and X-ray diffraction analysis of gold NPs has been carried out by Kamiński et al. [54]. The dynamical stability and vibrational properties of Pt nanoclusters by ab initio methods were investigated by Maldonado et al. [55]. A comprehensive review of Pt NPs has been
  • high heating and cooling rates compared to the experimental ones, it has been shown to yield representative structures that are in good agreement with the ones observed via X-ray diffraction for a number of nanomaterials such as CuO NPs [62], TiO2 NPs [63], as well as carbon [64] and Ag [65
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Facile synthesis of Fe-based metal–organic frameworks from Fe2O3 nanoparticles and their application for CO2/N2 separation

  • Van Nhieu Le,
  • Hoai Duc Tran,
  • Minh Tien Nguyen,
  • Hai Bang Truong,
  • Toan Minh Pham and
  • Jinsoo Kim

Beilstein J. Nanotechnol. 2024, 15, 897–908, doi:10.3762/bjnano.15.74

Graphical Abstract
  • and yield of the as-prepared MIL-100(Fe) materials, including thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD) measurements, determination of textural properties, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy
  • Information File 1. Characterizations The materials’ crystalline structure was identified via room-temperature powder X-ray diffraction (PXRD) patterns from a MiniFlex600 system (Rigaku, Japan). The scan covered a 2θ range of 3–40° at a speed of 6°·min−1. Information regarding the morphologies of Fe2O3 and M
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Intermixing of MoS2 and WS2 photocatalysts toward methylene blue photodegradation

  • Maryam Al Qaydi,
  • Nitul S. Rajput,
  • Michael Lejeune,
  • Abdellatif Bouchalkha,
  • Mimoun El Marssi,
  • Steevy Cordette,
  • Chaouki Kasmi and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2024, 15, 817–829, doi:10.3762/bjnano.15.68

Graphical Abstract
  • , the positions of the E12g and A1g vibrational modes in the composite sample did not exhibit any noticeable shifts compared to the observed peaks in individual samples as reported in previous studies [26]. The X-ray diffraction (XRD) diagram shown in Figure 2a exhibits the diffraction peaks at 14.25
  • experiments, we weighed the samples using a sensitive electronic balance (Secura microbalance, Sartorius) with an accuracy down to 0.01 mg. Structural, crystalline, and vibrational properties of the fabricated materials were examined utilizing X-ray diffraction (D8 Discover diffractometer, Bruker) with a Kα
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Simultaneous electrochemical determination of uric acid and hypoxanthine at a TiO2/graphene quantum dot-modified electrode

  • Vu Ngoc Hoang,
  • Dang Thi Ngoc Hoa,
  • Nguyen Quang Man,
  • Le Vu Truong Son,
  • Le Van Thanh Son,
  • Vo Thang Nguyen,
  • Le Thi Hong Phong,
  • Ly Hoang Diem,
  • Kieu Chan Ly,
  • Ho Sy Thang and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 719–732, doi:10.3762/bjnano.15.60

Graphical Abstract
  • provided by the Merck company, Germany. Stock solutions of URI and HYP were prepared prior to use. Equipment The X-ray diffraction patterns of the suspensions of GQDs, peroxo titanium complexes, and TiO2/GQDs were recorded on a D8 Advance, Bruker, Germany with background subtraction. The morphologies of
  • composite (TiO2/GQDs) obtained by in situ synthesis of GQDs, derived from coffee grounds, and peroxo titanium complexes was used as electrode modifier in the simultaneous electrochemical determination of uric acid and hypoxanthine. The TiO2/GQDs material was characterized by photoluminescence, X-ray
  • diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray mapping. The TiO2/GQDs-GCE exhibits better electrochemical activity for uric acid and hypoxanthine than GQDs/GCE or TiO2/GCE in differential pulse voltammetry (DPV) measurements. Under optimized
PDF
Album
Supp Info
Full Research Paper
Published 20 Jun 2024
Other Beilstein-Institut Open Science Activities