Search results

Search for "acetylcholine" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2025

A nanocarrier containing carboxylic and histamine groups with dual action: acetylcholine hydrolysis and antidote atropine delivery

  • Elina E. Mansurova,
  • Andrey A. Maslennikov,
  • Anna P. Lyubina,
  • Alexandra D. Voloshina,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Anzhela A. Mikhailova,
  • Polina V. Mikshina,
  • Albina Y. Ziganshina and
  • Igor S. Antipin

Beilstein J. Nanotechnol. 2025, 16, 11–24, doi:10.3762/bjnano.16.2

Graphical Abstract
  • of acetylcholine lead to serious disturbances in the functioning of the nervous system, including death. The need for rapid administration of an antidote to restore esterase activity is critical, but practical implementation of this is often difficult. One promising solution may be the development of
  • antidote delivery systems that will release the drug only when acetylcholine levels are elevated. This approach will ensure timely delivery of the antidote and minimize side effects associated with uncontrolled drug release. Here, we describe the creation of a new smart system that serves as a carrier for
  • delivering an antidote (i.e., atropine) and functions as a synthetic esterase to hydrolyze acetylcholine. The nanocarrier was synthesized through microemulsion polycondensation of phenylboronic acid with resorcinarenes containing hydroxy, imidazole, and carboxylic groups on the upper rim. The nanocarrier
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2025

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • lactoferrin receptor [34][41]. More recently, nicotinic acetylcholine receptors (nAChRS) and diphtheria toxin receptor have also been described [34][42]. However, some receptors usually found on peripheral endothelial cells are not expressed, e.g., the albumin receptor [40][43]. Three major categories of
  • the BBB by reaching the brain through retrograde axonal transport. A short peptide derived from rabies virus glycoprotein (RVG), RVG-29, has also been used to increase brain delivery of nanoparticles [103][104]. RVG-29 interacts specifically with the nicotinic acetylcholine receptor (AchR) on neuronal
PDF
Album
Review
Published 04 Jun 2020

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • . Yang and colleagues [32], for example, exploited the ability of CNTs to cross the blood–brain barrier to deliver acetylcholine into the lysosomes of neurons in the experimental treatment of Alzheimer’s disease in mice. However, the biological applications of CNTs require their complete purification
PDF
Album
Correction
Review
Published 23 Oct 2014

Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

  • Tatiana Borisova,
  • Natalia Krisanova,
  • Arsenii Borуsov,
  • Roman Sivko,
  • Ludmila Ostapchenko,
  • Michal Babic and
  • Daniel Horak

Beilstein J. Nanotechnol. 2014, 5, 778–788, doi:10.3762/bjnano.5.90

Graphical Abstract
  • of not only glutamate, but also acetylcholine, monoamines, and γ-aminobutyric acid/glycine to synaptic vesicles is accomplished by vesicular transporters of the neurotransmitters, whose function depends on the proton electrochemical gradient ΔμH+ generated by V-ATPase that pumps protons into the
PDF
Album
Full Research Paper
Published 04 Jun 2014
Other Beilstein-Institut Open Science Activities