Search results

Search for "anti-cancer therapy" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages

  • Karishma Berta Cotta,
  • Sarika Mehra and
  • Rajdip Bandyopadhyaya

Beilstein J. Nanotechnol. 2021, 12, 1127–1139, doi:10.3762/bjnano.12.84

Graphical Abstract
  • biocompatibility and magnetic properties, have found applications in drug delivery, magnetic resonance imaging and treatment of iron deficiencies [3][4][5][6]. The property of hyperthermia has been found to be beneficial in localized drug release, particularly in cancer therapy [7]. In anti-cancer therapy, IONPs
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2021

Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes

  • Alfredo Nuñez-Rivera,
  • Pierrick G. J. Fournier,
  • Danna L. Arellano,
  • Ana G. Rodriguez-Hernandez,
  • Rafael Vazquez-Duhalt and
  • Ruben D. Cadena-Nava

Beilstein J. Nanotechnol. 2020, 11, 372–382, doi:10.3762/bjnano.11.28

Graphical Abstract
  • Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México 10.3762/bjnano.11.28 Abstract There is an increasing interest in the use of plant viruses as vehicles for anti-cancer therapy. In particular, the plant virus brome mosaic virus (BMV) and cowpea chlorotic mottle
  • and the gene silencing. In addition, BMV VLP carring siAkt1 inhibited the tumor growth in mice. These results show the attractive potential of plant virus VLPs to deliver molecular therapy to tumor cells with low immunogenic response. Keywords: anti-cancer therapy; brome mosaic virus (BMV); cowpea
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2020

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

  • María Sanromán Iglesias and
  • Marek Grzelczak

Beilstein J. Nanotechnol. 2020, 11, 263–284, doi:10.3762/bjnano.11.20

Graphical Abstract
  • -art of advanced techniques in the field of genomics such as digital PCR, next generation sequencing (NGS), fluorescence in situ hybridization (FISH) and BEAMing. These facilitate the fast design of mutational profiles of tumor DNA, helping the prioritization of anti-cancer therapy. Although these
PDF
Album
Review
Published 31 Jan 2020
Other Beilstein-Institut Open Science Activities