Search results

Search for "antidote delivery" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

A nanocarrier containing carboxylic and histamine groups with dual action: acetylcholine hydrolysis and antidote atropine delivery

  • Elina E. Mansurova,
  • Andrey A. Maslennikov,
  • Anna P. Lyubina,
  • Alexandra D. Voloshina,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Anzhela A. Mikhailova,
  • Polina V. Mikshina,
  • Albina Y. Ziganshina and
  • Igor S. Antipin

Beilstein J. Nanotechnol. 2025, 16, 11–24, doi:10.3762/bjnano.16.2

Graphical Abstract
  • antidote delivery systems that will release the drug only when acetylcholine levels are elevated. This approach will ensure timely delivery of the antidote and minimize side effects associated with uncontrolled drug release. Here, we describe the creation of a new smart system that serves as a carrier for
  • , encapsulation of the antidote, acetylcholine hydrolysis, and antidote release. Keywords: acetylcholine; antidote delivery; artificial cholinesterase; atropine; nanocarrier; resorcinarene; Introduction Cholinergic toxicity results from an excessive quantity of acetylcholine (ACh), causing muscle cramps, nausea
  • antidote delivery. Under healthy conditions, with a neutral pH and normal glucose concentrations, the nanocarrier is found to be stable. The employed resorcinarenes and the nanocarrier exhibit good hemocompatibility and low cytotoxicity with respect to human embryonic lung cells (WI38) and a healthy liver
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2025
Other Beilstein-Institut Open Science Activities