Search results

Search for "antireflection coating" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Ar+ implantation-induced tailoring of RF-sputtered ZnO films: structural, morphological, and optical properties

  • Manu Bura,
  • Divya Gupta,
  • Arun Kumar and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 872–886, doi:10.3762/bjnano.16.66

Graphical Abstract
  • fundamental absorption edge. With the increase in argon ion fluence, the diffuse reflectance was found to decrease, which is related to the decrease in the surface RMS roughness also reported in AFM analysis. Thus, implanted ZnO films can be employed as an antireflection coating in optoelectronic devices [38
PDF
Album
Full Research Paper
Published 11 Jun 2025

Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications

  • Chin-Yi Tsai,
  • Jyong-Di Lai,
  • Shih-Wei Feng,
  • Chien-Jung Huang,
  • Chien-Hsun Chen,
  • Fann-Wei Yang,
  • Hsiang-Chen Wang and
  • Li-Wei Tu

Beilstein J. Nanotechnol. 2017, 8, 1939–1945, doi:10.3762/bjnano.8.194

Graphical Abstract
  • sunlight from the metals, but they can also serve the function of antireflection coating (ARC) films, given proper design of the film thickness. A ZnO thin film with appropriate doping could potentially act as the emitter with a Si substrate base to form a heterostructure solar cell. Therefore, in the most
PDF
Album
Full Research Paper
Published 15 Sep 2017

Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates

  • Gema López,
  • Pablo R. Ortega,
  • Cristóbal Voz,
  • Isidro Martín,
  • Mónica Colina,
  • Anna B. Morales,
  • Albert Orpella and
  • Ramón Alcubilla

Beilstein J. Nanotechnol. 2013, 4, 726–731, doi:10.3762/bjnano.4.82

Graphical Abstract
  • ) was evaluated at a carrier injection level corresponding to 1-sun illumination, which led to values below 10 cm/s. Reflectance values below 2% were measured on textured samples over the wavelength range of 450–1000 nm. Keywords: aluminum oxide (Al2O3); antireflection coating; atomic layer deposition
  • single 90 nm thick Al2O3 film. Therefore, the latter represents the better option as an antireflection coating compared to Al2O3/a-SiCx stacks. This result is supported by the reflectance measurements of Al2O3 films with different thicknesses and Al2O3/a-SiCx stacks on polished and textured c-Si
  • . Inserting an a-SiCx capping layer by PECVD technique can overcome this drawback. In this study, we have investigated different combinations of layers that provide good antireflection properties while maintaining a total film thickness of 75 nm. In addition to the passivation, a high-quality antireflection
PDF
Album
Full Research Paper
Published 06 Nov 2013
Other Beilstein-Institut Open Science Activities