Search results

Search for "co-catalyst" in Full Text gives 17 result(s) in Beilstein Journal of Nanotechnology.

ReactorAFM/STM – dynamic reactions on surfaces at elevated temperature and atmospheric pressure

  • Tycho Roorda,
  • Hamed Achour,
  • Matthijs A. van Spronsen,
  • Marta E. Cañas-Ventura,
  • Sander B. Roobol,
  • Willem Onderwaater,
  • Mirthe Bergman,
  • Peter van der Tuijn,
  • Gertjan van Baarle,
  • Johan W. Bakker,
  • Joost W. M. Frenken and
  • Irene M. N. Groot

Beilstein J. Nanotechnol. 2025, 16, 397–406, doi:10.3762/bjnano.16.30

Graphical Abstract
  • water (m/z 18) indicating that the FTS reaction has started. After ≈1200 seconds, the water signal reaches a maximum. Hereafter, the temperature decreases, until reaching 490 K, where the reaction completely stops and the number of counts starts to significantly decrease. At 490 K, at which point the Co
  • catalyst ceases its reactivity, the reaction stops. Furthermore, we observe maxima in masses of m/z 30, 44, and 86, representing ethane, propane, and hexane, respectively, in the same time frame as that for the observation of water formation. Conclusion The developments in the ReactorAFM/STM design prove
PDF
Album
Full Research Paper
Published 21 Mar 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • ) that incorporate GO as a co-catalyst have been employed in the photocatalysis field to remove antibiotics. For instance, g-C3N4/Ag2CO3/GO [108], BiOBr/MoS2/GO [111], and g-C3N4/GO/CoFe2O4 [64]. rGO is also considered as a promising semiconductor material, but its characteristics can differ based on the
PDF
Album
Review
Published 25 Feb 2025

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • )porphyrin hydrogel) and PPy/FeTCPP/Co catalyst at 10 mA/cm2 current density, and in 0.1 M KOH, were 1.74 and 1.61 versus RHE, respectively (the catalyst loading equals to 0.3 mg/cm2) [55]. The analysis of , , and hydrogel catalysts in 1 M KOH for the OER process showed that the overpotential at a current
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • charges and, hence, increase photocatalytic activity, metallic bismuth can function as a direct plasmonic photocatalyst (similar to Au and Ag) or a co-catalyst [77]. Also, the unique layered crystal structure of Aurivillius-type bismuth oxide-based semiconductors allows for the induction of an internal
PDF
Album
Review
Published 03 Mar 2023

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • potential role of Au nanoparticles in the S-scheme heterostructure is noteworthy. They serve as a co-catalyst for improving electron separation and transmission due to the photogenerated potential. By forming heterojunctions, the visible-light absorption as well as the carrier separation efficiency of Bi
PDF
Album
Review
Published 11 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • prominent carbon nanotube tips. This type of process strategy is used to produce CNT tips in wafer-scale AFM. By identifying and manipulating the key growth conditions that control the density and length of carbon nanotube growth; i.e., the amount of Co catalyst and CNT growth time, it is possible to switch
PDF
Album
Review
Published 03 Nov 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • , surface engineering, heterojunction construction, co-catalyst, which will be thoroughly outlined in this review. Structure and bandgap SnO2 has a crystal structure similar to that of rutile TiO2 [41][42]. The unit cell parameters of rutile SnO2 are a = b = 0.47374 nm and c = 0.31864 nm [43]. In one unit
PDF
Album
Review
Published 21 Jan 2022

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • transfer nanochannels [5]. The as-prepared g-C3N4 nanosheet@ZnIn2S4 nanoleaf structure displays an enhanced photocatalytic activity for H2 production without the addition of a Pt co-catalyst. As visible-light-active photocatalysts, ternary metal sulfide (e.g., ZnIn2S4 and CdIn2S4) have attracted great
  • enhance photocatalytic activity. Accordingly, the two-step fabrication of CdIn2S4/CCN photocatalysts with different CdIn2S4 content is the target of this study. It is demonstrated that the CdIn2S4/CCN hybrid shows a superior H2 production activity without the addition of a Pt co-catalyst under visible
  • use of the additive Pt co-catalyst. As shown in Figure 8, the pristine g-C3N4 presents a negligible H2 generation rate, but after introduction of the self-doped C by a simple supramolecular self-assembly method, the CCN nanosheets display a higher H2 generation rate due to the presence of the large
PDF
Album
Full Research Paper
Published 18 Apr 2019

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
PDF
Album
Review
Published 16 May 2018

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • catalytic materials, modification of the existed catalytic materials (e.g., noble-gas doping, co-catalyst impregnation, noble-metal loading, plasmonic sensitization and Z-scheme systems), and optofluidics (or microfluidics) based APS. It should be noted that many efforts have been made to develop bio
PDF
Album
Review
Published 04 Jan 2018

One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

  • Egor V. Lobiak,
  • Lyubov G. Bulusheva,
  • Ekaterina O. Fedorovskaya,
  • Yury V. Shubin,
  • Pavel E. Plyusnin,
  • Pierre Lonchambon,
  • Boris V. Senkovskiy,
  • Zinfer R. Ismagilov,
  • Emmanuel Flahaut and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 2669–2679, doi:10.3762/bjnano.8.267

Graphical Abstract
  • nickel hydroxide in hydrogen atmosphere [15]. The hybrid showed improved cycling stability in lithium–sulfur batteries as compared to the electrode made from porous carbon only. Cai et al. have synthesized N-doped hierarchical porous carbon–CNT hybrids using a melamine-formaldehyde resin, Fe/Co catalyst
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2017

High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid

  • Shu Chin Lee,
  • Hendrik O. Lintang and
  • Leny Yuliati

Beilstein J. Nanotechnol. 2017, 8, 915–926, doi:10.3762/bjnano.8.93

Graphical Abstract
  • of the best modifiers, the use of a co-catalyst has been recognized to improve the photocatalytic performance of semiconductor photocatalysts as it promotes charge separation and suppresses photocorrosion of the semiconductor photocatalyst [3][4]. One of the potential co-catalyst modifiers is iron
  • /TiO2 heterojunction might promote better electron transfer which resulted in improved photocatalytic activity of the Fe2O3(0.5)/TiO2 (PD) material. Photoluminescence has been associated with electron–hole recombination of a photocatalyst [39]. In this study, the ability of an Fe2O3 co-catalyst to
  • superoxide radical scavengers. The activity decreased 8.8 and 1.4 times, respectively, as compared to those on TiO2 (NT), i.e., 5.8 and 1.2 times, respectively. Such a result suggested the crucial role of Fe2O3 as a co-catalyst to improve the interfacial charge transfer and suppress electron–hole
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2017

Investigation of growth dynamics of carbon nanotubes

  • Marianna V. Kharlamova

Beilstein J. Nanotechnol. 2017, 8, 826–856, doi:10.3762/bjnano.8.85

Graphical Abstract
  • recent works [113][119][120][123][124][125][126] succeeded in the selective growth of SWCNTs with chiralities that are different from (6,5). In [113][123], near-armchair SWCNTs with a chirality of (9,8) were selectively synthesized. The authors of [113] produced the SWCNT samples using Co catalyst on TUD
PDF
Album
Review
Published 11 Apr 2017

Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts

  • Jing Wang,
  • Ke Feng,
  • Hui-Hui Zhang,
  • Bin Chen,
  • Zhi-Jun Li,
  • Qing-Yuan Meng,
  • Li-Ping Zhang,
  • Chen-Ho Tung and
  • Li-Zhu Wu

Beilstein J. Nanotechnol. 2014, 5, 1167–1174, doi:10.3762/bjnano.5.128

Graphical Abstract
  • Photocatalytic hydrogen evolution from water-splitting is a long-standing goal for researchers since it can help to supply the growing worldwide energy demand not only environmentally friendly but also sustainably [1][2][3][4]. Platinum, the most efficient hydrogen evolution co-catalyst, is rare and expensive
  • demonstrated that G-SO3 acts as an electron mediator of EY and platinum nanoparticles co-catalyst, we consider that in the current study the electron transfer process from the EY radical anion (EY•−) to G-SO3 or in situ formed-Co(TEOA)22+ would be facilitated. Similar to the storage phenomenon observed in
PDF
Album
Supp Info
Full Research Paper
Published 29 Jul 2014

Enhancement of photocatalytic H2 evolution of eosin Y-sensitized reduced graphene oxide through a simple photoreaction

  • Weiying Zhang,
  • Yuexiang Li,
  • Shaoqin Peng and
  • Xiang Cai

Beilstein J. Nanotechnol. 2014, 5, 801–811, doi:10.3762/bjnano.5.92

Graphical Abstract
  • investigated with eosin Y (EY) as a sensitizer of the RGO and Pt as a co-catalyst. When the irradiation time is increased from 0 to 24 h the activity rises, and then reaches a plateau. Under optimum conditions (pH 10.0, 5.0 × 10−4 mol L−1 EY, 10 μg mL−1 RGO), the maximal apparent quantum yield (AQY) of EY
  • efficient electron relay between the photoexcited EY and the loaded Pt co-catalyst, which shows an AQY of 4.15% under visible light irradiation. In these works, RGO was obtained by a chemical reduction of GO with hydrazine or sodium borohydride as a reductant. Graphene, an atom-thick two-dimensional (2D
  • controlling UV irradiation time. The RGO solution and its powder were denoted as RGOx and RGOx-p, respectively, where x (in hours) represents the particular UV irradiation time. The photocatalytic activity of EY-sensitized RGOx was investigated by using Pt as a co-catalyst and trimethylamine (TMA) as a
PDF
Album
Full Research Paper
Published 06 Jun 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • role of a co-catalyst, which may act as electron sinks to draw them away from the holes and enhance their lifetimes [64]. Under visible light, the plasmonic nanostructures enhance the solar-light harvesting and increase the visible-light energy-conversion efficiency as photosensitizer. It is well-known
PDF
Album
Review
Published 23 May 2014

Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation

  • Liang Wei,
  • Yongjuan Chen,
  • Jialin Zhao and
  • Zhaohui Li

Beilstein J. Nanotechnol. 2013, 4, 949–955, doi:10.3762/bjnano.4.107

Graphical Abstract
  • for hydrogen evolution under visible light irradiation was also investigated. It was found that the photocatalytic hydrogen evolution activity over hexagonal ZnIn2S4 can be significantly increased by loading NiS as a co-catalyst. The formation of a good junction between ZnIn2S4 and NiS via the two
  • loading amount of 0.5 wt %. This work demonstrates a high potential of the developing of environmental friendly, cheap noble-metal-free co-catalyst for semiconductor-based photocatalytic hydrogen evolution. Keywords: co-catalyst; hydrogen evolution; NiS; photocatalytic; photocatalysis; visible light
  • ] or RGO [23] into ZnIn2S4 nanostructures, the photocatalytic performance for hydrogen evolution over ZnIn2S4 have been enhanced to a certain degree. Studies on semiconductor-based photocatalysts revealed that the deposition of a suitable co-catalyst on the semiconductor photocatalysts can play
PDF
Album
Full Research Paper
Published 23 Dec 2013
Other Beilstein-Institut Open Science Activities