Search results

Search for "controlled release" in Full Text gives 60 result(s) in Beilstein Journal of Nanotechnology.

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • -based electrospun fibers for biomedical applications Silk from Bombyx mori has been used as biomedical suture for centuries [94]. Generally, silks are protein polymers that are spun into fibers, which provides a wide range of material options for controlled release systems, biomaterials, and tissue
  • new area for exploring an environmentally friendly variant of urethanes. Typical 3D printing frequently uses heat, organic solvents, or cross-linkers, which decrease the bioactivity of the chemicals. It may be challenging to include bioactive compounds for controlled release. Thus, a water-based
PDF
Album
Review
Published 24 Apr 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
  • stability in the bloodstream and enabled the controlled release of MALAT1 ASO in the brain’s reductive environment. As a result, significant knockdown of targeted long non-coding RNA was observed in key brain regions, including the cerebral cortex and hippocampus, after a single intravenous administration
  • property allows PLG to be used primarily as a stabilising carrier or a controlled-release matrix for drug and ASO delivery [99]. Even though its negative charge often limits direct complexation with negatively charged ASOs, it can be used in conjugation strategies or in combination with other cationic
  • controlled release through disulfide bond cleavage [139]. Following dendrimer PEGylation (PEG5000 modified with a synthetic luteinizing-hormone-releasing hormone (LHRH) analogue) provided greater particle stability and active targeting to specific cancer cells, which led to increased intratumoral
PDF
Album
Review
Published 27 Mar 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • layering fibers upon fibers through multiple steps, as shown in Figure 6. The functionality of the overall structure depends on the different properties exhibited by each layer. In bioactive encapsulation and controlled release applications, for example, multilayered membranes can be used to regulate the
  • is a promising method for fabricating nanofibers with advantages such as protection, controlled release, and high loading efficiency for food, pharmaceutical, and biomedical applications [100]. Table 3 summarizes some of the main advantages and disadvantages of the different electrospinning methods
PDF
Album
Review
Published 26 Feb 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • suitable for crossing the BBTB and targeting brain cancer cells. A biphasic drug release profile was observed for all functionalized TMZ-loaded formulations in simulated in vivo conditions, with a sustained release pointing to the potential for controlled release of TMZ in brain tumor cells. The
  • controlled release of TMZ [41][42]. In another publication [25], the suitability of graphene oxide (GO) functionalized with folic acid (FA) for controlled release of TMZ and the inhibition of glioma growth was confirmed in vivo. To our knowledge (and stated also in the paper of Petrenko et al. [35]), our
  • with malignant (recurrent) glioma. These findings are supported by several studies in which the controlled release of TMZ was provided by loading in nanoparticulated carriers, with subsequent improved brain uptake, increased potency, and lower systemic toxicity [54][55][56][57][58][59]. Controlled
PDF
Album
Full Research Paper
Published 19 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • ring, coupled with the controlled release of DOX, resulted in a significant reduction in PCO incidence, that is, only 28% in a rabbit model, 100 days post-surgery, through a combination of photothermal and drug therapy [116]. Additionally, two-dimensional Ti3C2 nanosheets loaded into IOLs were used for
PDF
Album
Review
Published 17 Feb 2025

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • , consequently, sustained and controlled release of potential associated drugs [21]. To overcome these limitations and enhance coating efficiency, the decoration of nanostructures with functional ligands increases their biological interactions. Decreasing nonspecific interactions and immunogenicity is one of the
PDF
Album
Perspective
Published 16 Dec 2024

Green synthesis of silver nanoparticles derived from algae and their larvicidal properties to control Aedes aegypti

  • Matheus Alves Siqueira de Assunção,
  • Douglas Dourado,
  • Daiane Rodrigues dos Santos,
  • Gabriel Bezerra Faierstein,
  • Mara Elga Medeiros Braga,
  • Severino Alves Junior,
  • Rosângela Maria Rodrigues Barbosa,
  • Herminio José Cipriano de Sousa and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 1566–1575, doi:10.3762/bjnano.15.123

Graphical Abstract
  • characteristics such as greater absorption capacity, greater bioavailability, controlled release of active ingredients, improved solubility of hydrophobic substances in water, and good kinetic stability [12][13][14]. Metallic nanoparticles have been investigated as a promising approach for vector control. The
PDF
Album
Review
Published 04 Dec 2024

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
  • . We discuss the obstacles in the conventional delivery of phytochemicals, the fundamental architecture of PLHNPs, and the types of PLHNPs, highlighting their ability to improve encapsulation efficiency, stability, and controlled release of the encapsulated phytochemicals. In addition, the surface
  • polyethylene glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and chitosan (CHS), provides structural integrity, controlled release properties, and protection against premature degradation [14][15]. This hybrid structure improves the encapsulation efficiency of phytochemicals/drugs
  • improve the selective delivery of drugs/phytochemicals to specific tissues or cells. A site-specific targeting approach enhances the therapeutic efficacy of phytochemicals and reduces systemic toxicity. In addition to enhancing solubility and targeting, PLHNPs offer controlled release properties that are
PDF
Album
Review
Published 22 Nov 2024

Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers

  • Ömür Acet,
  • Pavel Kirsanov,
  • Burcu Önal Acet,
  • Inessa Halets-Bui,
  • Dzmitry Shcharbin,
  • Şeyda Ceylan Cömert and
  • Mehmet Odabaşı

Beilstein J. Nanotechnol. 2024, 15, 1189–1196, doi:10.3762/bjnano.15.96

Graphical Abstract
  • physiological functions. They can effectively transport therapeutic agents to targeted cells or specific intracellular regions through passive targeting or ligand-based strategies [9][10][11]. The use of certain polymers could potentially enable sustained drug levels for controlled release and extended
PDF
Album
Full Research Paper
Published 26 Sep 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • have also emphasized alginate-based nanoparticles for drug delivery, wound healing, and controlled release of drugs [35][36][37]. There are few studies that reviewed alginate-based materials for sensing, pharmacy, and biomedicine. Therefore, this review article is based on recent research on alginate
  • , researchers have improved the formulation procedures for alginate-based nanoparticles to improve drug-loading capacity, stability, and controlled release characteristics. To improve the formulation of alginate nanoparticles, several methods have been developed, including emulsion-based approaches, solvent
  • suitable for long-term use. Moreover, the alginate-based nanoparticles have demonstrated their suitability for the controlled release of bioactive materials. The nanoparticles can encapsulate and deliver various active compounds, such as polyphenolic compounds, in a controlled manner. Also, these combined
PDF
Album
Review
Published 22 Aug 2024

Therapeutic effect of F127-folate@PLGA/CHL/IR780 nanoparticles on folate receptor-expressing cancer cells

  • Thi Ngoc Han Pham,
  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan Thang Cao,
  • Thanh-Danh Nguyen,
  • Vy Tran Anh and
  • Hieu Vu_Quang

Beilstein J. Nanotechnol. 2024, 15, 954–964, doi:10.3762/bjnano.15.78

Graphical Abstract
  • , and the crystal violet precipitate was dissolved with DMSO. The samples were then measured at 562 nm. The untreated cell was employed as a negative control. The cells treated with CHL served as a positive control. Results and Discussion Controlled release, biocompatibility, targeted distribution
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2024

Electrospun nanofibers: building blocks for the repair of bone tissue

  • Tuğrul Mert Serim,
  • Gülin Amasya,
  • Tuğba Eren-Böncü,
  • Ceyda Tuba Şengel-Türk and
  • Ayşe Nurten Özdemir

Beilstein J. Nanotechnol. 2024, 15, 941–953, doi:10.3762/bjnano.15.77

Graphical Abstract
  • research and patents in the field. Keywords: bone regeneration; controlled release; drug delivery; electrospinning; nanofibers; Introduction The nanofiber technology is a recent technology developed for producing implantable systems that can be used for structural support to the bones as well as drug
  • , antibiotics, anticancer agents, proteins, DNA, RNA, and growth factors for tissue regeneration [6][7][8]. In addition, nanofibers as drug delivery systems provide rapid or delayed and controlled release of pharmaceuticals. Apart from being implantable drug delivery systems, nanofiber scaffolds can contribute
  • [33]. In addition, given their compatibility with various active molecules, the polymers are the most essential formulation components in providing long-term controlled release of drugs. Biodegradability, biocompatibility, hydrophilicity, and mechanical properties of polymers are important criteria
PDF
Album
Review
Published 25 Jul 2024

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • augmenting their dissolution rate, and in vitro–in vivo correlation is normally applied [31]. These drugs are suitable for sustained release and controlled release formulations that provide more stable and predictable plasma levels. Drug solubility can be increased by employing strategies from classical
PDF
Album
Review
Published 27 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • anticancer drugs while mitigating the adverse effects of large dosage administration [6][7]. Additionally, it offers several advantages, such as controlled release, targeted drug delivery, and improved stability [8]. Moreover, nanoscale drug delivery systems hold great promise for specific cancer treatments
  • thicker polymer layer may impede surface erosion. This aspect is crucial in drug release, as it can lead to a slower, more controlled release of the encapsulated drug [55]. Thus, the thickness of the PDA coating emerges as a pivotal factor influencing the release dynamics of the loaded drug [56]. Another
  • tumor microenvironment triggers the controlled release of VNB. When combined with laser-induced photothermal therapy, this results in effective tumor elimination without recurrence. This mechanism holds immense promise for precise and targeted drug delivery. Moreover, VNB/PDA/Fe3O4 NPs exhibit
PDF
Album
Full Research Paper
Published 28 Feb 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • a hydrodynamic diameter of approximately 98 nm and a zeta potential of −25 mV. The myrcene-based nanoemulsion displayed a hydrodynamic diameter of 118 nm and a zeta potential of −20 mV. Notably, both nanoemulsions demonstrated stability over 60 days, accompanied by controlled release properties and
  • constituents from oxidation, in addition to promoting better sensorial properties [13]. Moreover, the development of aqueous nanoemulsions would enable a better dispersion of vector control agents, inducing a controlled release and a possibly higher effectiveness in eliminating immature stages of mosquitoes
  • concentrations (5 mg/L and 25 mg/L) compared to free cymene. This suggests that the encapsulation influences the bioactivity, potentially because of improved dispersion and controlled release of cymene. Similarly, free myrcene exhibited a concentration-dependent efficacy. Myrcene NEs consistently outperformed
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • exhibited excellent performance in repairing bone defects [3][26], healing diabetic foot ulcers [27], promoting hemostasis [28], acting as anti-leishmanial drugs [29], and inhibiting microbial agents [27][30]. Zhou et al. [31] developed hybrids of nanofibers and microparticles for dual-step controlled
  • release of BBR, combining a fast-release step of BBR from hydrophilic polypyrrolidone nanofibers (47.9 wt % in the first hour) and a sustained-release step of BBR from the insoluble cellulose acetate microparticles (98.6 wt % for 60 h). In comparison with the aforementioned hybrid nanofibers, the release
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review

  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Éverton do Nascimento Alencar,
  • Edijane Matos Sales and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 37–50, doi:10.3762/bjnano.15.4

Graphical Abstract
  • biological media, and a controlled release profile. Additionally, nanostructures, especially those smaller than 200 nanometers, are susceptible to uptake by the cells infected with the etiological agent of leishmaniasis. This ability allows an expressive increase in the leishmanicidal activity of curcumin
PDF
Album
Review
Published 04 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • advantages of using this type of nanoparticles as nanocarriers are their potential use for drug controlled release, the ability to protect drugs and other molecules with biological activity against the environment, improvement of their bioavailability and therapeutic index [17]. These nanocarriers are
  • . It can have one or multiple layers. Due to that, their size can range from 30 nm to the micrometer range [37]. As drug vehicles, they exhibit unique properties, such as protection of encapsulated compounds from physiological degradation, extended drug half-life, controlled release of the drug
PDF
Album
Supp Info
Review
Published 03 Jan 2024

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • microparticles. The incorporation of CUR within the versatile biomolecular platform MnCO3-HSA-MPs has not been previously reported. The obtained albumin microparticles are expected to enhance the water solubility of CUR, provide controlled release, and improve its biological activity. These peanut-shaped
  • using a J-1500 spectropolarimeter (JASCO, Tokyo, Japan) in the wavelength range of 200 to 260 nm. The measurements were conducted at 25 °C in quartz cuvettes with an optical path of 0.1 mm at a scanning speed of 100 nm/min. In vitro controlled release studies of CUR-HSA-MPs A total of 1 mL of the
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • studies. Along with enormous progress in preclinical studies including improved intratumor drug delivery, enhanced therapeutic efficacy, and controlled release of chemotherapeutics at tumor sites, researchers evaluated the therapeutic potential of ACNPs in clinical trials. A literature study demonstrated
PDF
Album
Review
Published 04 Sep 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • -coated NPs carrying SPIONs have been engineered for the diagnosis and treatment of lung cancer and enabled MRI imaging of tumor tissue in mouse lung cancer tumor models. Moreover, this nanodelivery system also yielded controlled release in the TME and exerted a tumor-inhibitory effect through the
  • imaging capabilities. The loading of lonidamine, which has anticancer function, and ᴅʟ-menthol, which exhibits controlled release, enabled the NPs to function more effectively in diagnosis and treatment. After encapsulation by the 4T1 breast cancer cell membrane, the NPs had good stability and were
PDF
Album
Review
Published 27 Feb 2023

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • matrix. A value of β ≤ 0.75 indicates Fickian diffusion, while 0.75 < β < 1 indicates a combination of Fickian diffusion and controlled release [59]. The β value for the Weibull model was calculated as 0.594 for the DCX-PLGA NPs. According to the literature, when these data are examined within the scope
PDF
Album
Full Research Paper
Published 23 Nov 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • MNs for rapid or controlled release of the drug incorporated within the MNs. (D) Hollow MNs used to puncture the skin and enable the release of a liquid drug following active infusion or diffusion of the formulation through the needle bores. (E) Hydrogel-forming MNs take up interstitial fluids from
PDF
Album
Review
Published 24 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • role in the controlled release of AgNPs at the implanted site and also behave as biocompatible scaffolds. Wang et al. (2019) developed a system containing hydroxyapatite and silver-based composites and electrodeposited those onto titanium implants and chitosan to regulate silver ion and calcium ion
  • min [68] (Figure 4). Cancian et al. (2016) developed a novel bioactive scaffold based on a thermosensitive chitosan hydrogel. In this work, carbon nanotubes were used to stabilise the chitosan hydrogel, which offers mechanical strength and controlled release of protein therapeutics. The bioactivity of
PDF
Review
Published 29 Sep 2022

Detection and imaging of Hg(II) in vivo using glutathione-functionalized gold nanoparticles

  • Gufeng Li,
  • Shaoqing Li,
  • Rui Wang,
  • Min Yang,
  • Lizhu Zhang,
  • Yanli Zhang,
  • Wenrong Yang and
  • Hongbin Wang

Beilstein J. Nanotechnol. 2022, 13, 549–559, doi:10.3762/bjnano.13.46

Graphical Abstract
  • mentioning here that the pH value of the reaction systems played an important role in the synthesis of GSH-Rh6G2. Rh6G2, as an ideal candidate for controlled-release molecular systems, shows little fluorescence (Figure 1b). In the absence of GNPs, the conjugation of GSH-Rh6G2 yields obvious fluorescence. The
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022
Other Beilstein-Institut Open Science Activities