Search results

Search for "electron collision" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Electron-induced ligand loss from iron tetracarbonyl methyl acrylate

  • Hlib Lyshchuk,
  • Atul Chaudhary,
  • Thomas F. M. Luxford,
  • Miloš Ranković,
  • Jaroslav Kočišek,
  • Juraj Fedor,
  • Lisa McElwee-White and
  • Pamir Nag

Beilstein J. Nanotechnol. 2024, 15, 797–807, doi:10.3762/bjnano.15.66

Graphical Abstract
  • the interaction with free electrons. The motivation comes from the possible use of this molecule as a nanofabrication precursor and from the corresponding need to understand its elementary reactions fundamental to the electron-induced deposition. We utilize two complementary electron collision setups
  • . Interesting differences also appear when this precursor is compared to structurally similar iron pentacarbonyl. The present findings shed light on the recent electron-induced chemistry of Fe(CO)4MA on a surface under ultrahigh vacuum. Keywords: electron collision; focused electron beam-induced deposition
  • = 11.6, 7.8 Hz, 1H), 2.91 (dd, J = 11.6, 2.3 Hz, 1H), 2.62 (dd, J = 7.7, 2.3 Hz, 1H). Electron collision experiments Two different experimental setups were used to perform low-energy electron beam-induced dissociation experiments. They are complementary; one of them, the CLUster Beam setup (CLUB), has a
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • beams), in plasma applications, or possibly in radiation therapy as radiosensitizers. Experimental We performed electron collision experiments with several metal acetylacetonate compounds, ML2, in a crossed-beam arrangement. According to the description given in [16][17][29], this arrangement consists
PDF
Album
Full Research Paper
Published 26 Sep 2023

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • (CO)4]+ is comparatively low, reflecting further CO loss from these ions within the time frame of our observations. In an ionizing electron collision substantial excess energy is left in the ionized species. This leads to fragmentation, which in the case of metal carbonyls is mainly characterized by
PDF
Album
Full Research Paper
Published 04 Feb 2022

Enhancement of X-ray emission from nanocolloidal gold suspensions under double-pulse excitation

  • Wei-Hung Hsu,
  • Frances Camille P. Masim,
  • Armandas Balčytis,
  • Hsin-Hui Huang,
  • Tetsu Yonezawa,
  • Aleksandr A. Kuchmizhak,
  • Saulius Juodkazis and
  • Koji Hatanaka

Beilstein J. Nanotechnol. 2018, 9, 2609–2617, doi:10.3762/bjnano.9.242

Graphical Abstract
  • for a solvated electron and an electron collision rate for momentum exchange ν = 1015 s−1. The following numerical values are valid for the ENZ state in water: nENZ = κENZ = 0.86, AENZ = 0.82, = 3.1 × 1021 cm−3, = 42 mJ/cm2. This corresponds to the ionization threshold for water through the creation
PDF
Album
Full Research Paper
Published 01 Oct 2018

Electron interaction with copper(II) carboxylate compounds

  • Michal Lacko,
  • Peter Papp,
  • Iwona B. Szymańska,
  • Edward Szłyk and
  • Štefan Matejčík

Beilstein J. Nanotechnol. 2018, 9, 384–398, doi:10.3762/bjnano.9.38

Graphical Abstract
  • Toruń, Gagarina 7, 87-100 Toruń, Poland 10.3762/bjnano.9.38 Abstract In the present study we have performed electron collision experiments with copper carboxylate complexes: [Cu2(t-BuNH2)2(µ-O2CC2F5)4], [Cu2(s-BuNH2)2(µ-O2CC2F5)4], [Cu2(EtNH2)2(µ-O2CC2F5)4], and [Cu2(µ-O2CC2F5)4]. Mass spectrometry was
PDF
Album
Full Research Paper
Published 01 Feb 2018
Other Beilstein-Institut Open Science Activities