Search results

Search for "entropy" in Full Text gives 63 result(s) in Beilstein Journal of Nanotechnology.

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • and selection. Additionally, because of concerns over material toxicity, novel materials like metal-organic frameworks, covalent organic frameworks, high-entropy materials, single-atom materials, electric power generation nanomaterials, 3D bioprinting materials, and upconversion luminescent materials
PDF
Album
Review
Published 17 Feb 2025

Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model

  • Xochitl Aleyda Morán Martínez,
  • José Alberto Luna López,
  • Zaira Jocelyn Hernández Simón,
  • Gabriel Omar Mendoza Conde,
  • José Álvaro David Hernández de Luz and
  • Godofredo García Salgado

Beilstein J. Nanotechnol. 2024, 15, 1627–1638, doi:10.3762/bjnano.15.128

Graphical Abstract
  • ) + H° (g) was developed to obtain the extensive properties of this reaction using FactSage in the temperature range from 500 to 1500 °C. Enthalpy (H), Gibbs energy (G), entropy (S), heat capacity (Cp), and Helmholtz energy (A) were obtained to calculate Keq through Equation 5 [27]. The thermodynamic
PDF
Album
Full Research Paper
Published 17 Dec 2024

Effect of radiation-induced vacancy saturation on the first-order phase transformation in nanoparticles: insights from a model

  • Aram Shirinyan and
  • Yuriy Bilogorodskyy

Beilstein J. Nanotechnol. 2024, 15, 1453–1472, doi:10.3762/bjnano.15.117

Graphical Abstract
  • enthalpy and entropy of vacancy formation in Fe. First-order phase transformations are accompanied by nucleation and the overcoming of energy barriers. To our knowledge, the consideration of nucleation energy barriers and the alteration of surface energies during transformation under irradiation has been
  • , respectively) and can be expressed as follows [17]: where, ΔHf is the enthalpy change for forming of a vacancy, ΔSf is the entropy change for vacancy formation, and ΔHmix is the ideal entropy of vacancy mixing, which may be given as: Here, T is the absolute temperature, and kB is the Boltzmann constant
  • = 3.28·10−19 J for the β phase [29][30][31][32][33]. The entropy change can be estimated using the Boltzmann constant, with values of ΔSfα = −0.5kB for the α phase and ΔSfβ = 0.2kB for the β phase [29][30][31][32][33][34]. Regarding kinetic parameters, the diffusion coefficients are estimated as D0α
PDF
Album
Full Research Paper
Published 21 Nov 2024

Effects of cutting tool geometry on material removal of a gradient nanograined CoCrNi medium entropy alloy

  • Yu-Sheng Lu,
  • Yu-Xuan Hung,
  • Thi-Xuyen Bui and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2024, 15, 925–940, doi:10.3762/bjnano.15.76

Graphical Abstract
  • -entropy alloys (MEAs) have attracted extensive attention and research because of their superior mechanical properties, such as higher ductility, strength, and toughness. This study uses molecular dynamics (MD) simulations to investigate the cutting behavior of a gradient nanograined (GNG) CoCrNi MEA
  • : CoCrNi; gradient nanograined materials; Hall–Petch; molecular dynamics; relative tool sharpness; removal mechanism; Introduction Compared with traditional alloys, high-entropy alloys (HEAs) with multiple elements exhibit diverse and unprecedented mechanical properties, attracting widespread scientific
  • attention and research [1][2]. Among them, the ternary medium-entropy alloy (MEA) CoCrNi and its derived five-element CoCrFeMnNi HEA [3][4] have been found to exhibit high strength and ductility. Weng et al. used laser-aided additive manufacturing to fabricate a CoCrNi MEA with a perfect combination of
PDF
Album
Full Research Paper
Published 23 Jul 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
  • solvated molecular precursors and is excited itself. LRL was first published by Shafeev et al. in 1986, who reduced triphenylphosphine Au(I) complexes to form Au nanoparticles on different materials such as GaAs [33] and was recently extended to synchronous LRL of multiple elements into high-entropy
PDF
Album
Review
Published 05 Jun 2024

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • binding is a highly selective interaction because both enthalpy and entropy are involved in the binding thermodynamics [73]. In case of multivalent particles, the entropy loss on binding is less than that of the two molecules in free solution. The multivalent NPs are very specific for the corresponding
PDF
Album
Review
Published 04 Sep 2023

Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks

  • Suyi Liu,
  • Yasuo Norikane and
  • Yoshihiro Kikkawa

Beilstein J. Nanotechnol. 2023, 14, 872–892, doi:10.3762/bjnano.14.72

Graphical Abstract
  • were partially desorbed from the surface of HOPG. Desorption from the surface is unfavorable regarding enthalpy. However, the detached alkyl chain is mobile in the solution phase; thus, desorption from the surface is favorable concerning entropy. Therefore, the peculiar 2D structural change can be
  • explained by the nonlinearity of the entropy term in the Gibbs free energy. 3.2 Pore size The fabrication of nanoscale porous networks has attracted attention owing to their ability to accommodate guest molecules in the confined pores. Modification of the alkyl chain length facilitated the tuning of the
PDF
Album
Review
Published 23 Aug 2023

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • were mistakenly classified as normal. After verification, the heart sound classification model trained in the experiment achieved an accuracy rate of 94.8%. According to Liu et al. [38], adaptive noise-complete empirical modal decomposition permutation entropy combined with a support vector machine was
PDF
Album
Full Research Paper
Published 31 Jul 2023

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • + Adγ* or which allows for a correlation of the thermal sensitivity of the surface or interfacial tension with the surface or interfacial entropy According to [27][28], the temperature sensitivity of the surface energy of simple metallic melts depends on the change of the cohesion energy with
  • energy of the system. The larger the individual free surface energies, the larger the energetic gain upon the formation of an interface. Above, we have related the temperature sensitivity of the surface energy κ to the surface entropy Ss. For most liquids, the value κ is negative, owing to an increase in
  • entropy at higher temperatures. This entropy increase can be rationalized by decreasing the coordination number at a liquid surface at higher temperatures. However, a few exceptions have been observed to take positive values. For pure silver, a positive temperature sensitivity has been observed in the
PDF
Album
Full Research Paper
Published 23 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • through self-assembly [130]. The assembly process is usually driven by thermodynamics to form entropy-favored periodic arrangements. The periodically assembled monocrystalline coordination polymers have unique features. For instance, the assembly of polyhedral coordination polymers can form a more complex
PDF
Album
Review
Published 12 Aug 2022

Design and selection of peptides to block the SARS-CoV-2 receptor binding domain by molecular docking

  • Kendra Ramirez-Acosta,
  • Ivan A. Rosales-Fuerte,
  • J. Eduardo Perez-Sanchez,
  • Alfredo Nuñez-Rivera,
  • Josue Juarez and
  • Ruben D. Cadena-Nava

Beilstein J. Nanotechnol. 2022, 13, 699–711, doi:10.3762/bjnano.13.62

Graphical Abstract
  • solvation potentials are neglected, while van der Waals potential, the nondirectional hydrogen bond term, the hydrophobic term, and a conformational entropy penalty are considered) [20][21]. It can be observed that the binding energy values (Table 1 and Table 2) are significantly lower than the binding
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2022

Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles

  • Mikkel Juelsholt,
  • Jonathan Quinson,
  • Emil T. S. Kjær,
  • Baiyu Wang,
  • Rebecca Pittkowski,
  • Susan R. Cooper,
  • Tiffany L. Kinnibrugh,
  • Søren B. Simonsen,
  • Luise Theil Kuhn,
  • María Escudero-Escribano and
  • Kirsten M. Ø. Jensen

Beilstein J. Nanotechnol. 2022, 13, 230–235, doi:10.3762/bjnano.13.17

Graphical Abstract
  • by the Danish National Research Foundation (DNRF-149) Center for High-Entropy Alloys Catalysis (CHEAC). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory
PDF
Album
Supp Info
Letter
Published 16 Feb 2022

Influence of magnetic domain walls on all-optical magnetic toggle switching in a ferrimagnetic GdFe film

  • Rahil Hosseinifar,
  • Evangelos Golias,
  • Ivar Kumberg,
  • Quentin Guillet,
  • Karl Frischmuth,
  • Sangeeta Thakur,
  • Mario Fix,
  • Manfred Albrecht,
  • Florian Kronast and
  • Wolfgang Kuch

Beilstein J. Nanotechnol. 2022, 13, 74–81, doi:10.3762/bjnano.13.5

Graphical Abstract
  • directed, would be into the direction of higher fluence, not into the direction of lower fluence. Domain-wall motion towards the higher temperature in a temperature gradient can be explained by entropy [23][24] or conservation of angular momentum during the transmission of magnons driven by the temperature
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • properties to fit the targeted application in fields such as mechanics, optics, electronics, and biomaterials. Various types of coatings can be produced, from pure metals to metal oxides, nitrides, carbides, oxynitrides to metal alloys, or chemically more complex combinations such as high-entropy alloys [24
PDF
Album
Supp Info
Review
Published 04 Jan 2022

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • large entropy impact which accelerates the phonon–phonon scattering process. The total thermal conductivity (κtot) for the π-SnSe alloy is also plotted and presented in Figure 9c. It can be noted that initially, by the increase in temperature, κtot decreases and reaches its minimum value of 1.089 W·m−1
PDF
Album
Full Research Paper
Published 05 Oct 2021

Criteria ruling particle agglomeration

  • Dieter Vollath

Beilstein J. Nanotechnol. 2021, 12, 1093–1100, doi:10.3762/bjnano.12.81

Graphical Abstract
  • direction of a minimum of the free enthalpy. In this context, one may observe mechanisms leading to a reduction of the surface energy or controlled by the van der Waals interaction. Additionally, the ensemble may arrange in the direction of a maximum of the entropy. Simulations based on Monte Carlo methods
  • teach that, in case of any energetic interaction of the particles, the influence of the entropy is minor or even negligible. Complementary to the simulations, the extremum of the entropy was determined using the Lagrange method. Both approaches yielded identical result for the particle size distribution
  • of an agglomerated ensemble, that is, an exponential function characterized by two parameters. In this context, it is important to realize that one has to take care of fluctuations of the entropy. Keywords: agglomeration; enthalpy; entropy; simulation; surface energy; van der Waals interaction
PDF
Album
Full Research Paper
Published 29 Sep 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • process of forward and backward propagation is done many times until some accuracy/loss threshold is reached. The loss function has different formulae for different tasks. For example, binary-cross entropy, or categorical-cross entropy losses can be applied, respectively, for binary and categorical
PDF
Album
Review
Published 13 Aug 2021

Agglomerates of nanoparticles

  • Dieter Vollath

Beilstein J. Nanotechnol. 2020, 11, 854–857, doi:10.3762/bjnano.11.70

Graphical Abstract
  • or (attracting) highly agglomerated particles. For these two cases different distribution functions for the agglomerates were found. The size distribution of the agglomerates is ruled by the maximum of the entropy of the ensemble of agglomerates, which is calculated using Gibbs formula of entropy
  • . The exact determination of the size distribution of the agglomerates also gives the maximum size of the agglomerates. These considerations lead to an improved understanding of ensembles of agglomerated nanoparticles. Keywords: agglomeration; enthalpy; entropy; Gibbs entropy; nanoparticles; size
  • published [7][8]. In these studies, a distribution of particles exhibiting a maximum of the entropy was sought. These studies resulted in arrangements of particles in which the majority of particles was not found in agglomerates. Furthermore, the results of these studies [7][8] were also applied to
PDF
Album
Letter
Published 02 Jun 2020

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

  • María Sanromán Iglesias and
  • Marek Grzelczak

Beilstein J. Nanotechnol. 2020, 11, 263–284, doi:10.3762/bjnano.11.20

Graphical Abstract
  • formation of DNA circuits and include hybridization chain reaction (HCR), catalytic hairpin assembly (CHA) and entropy-driven catalysis [64]. These mechanisms have shown a great potential for developing biosensors of high sensitivity and high selectivity since the target DNA itself is used as a catalyst to
  • is released based on a thermodynamically driven entropy gain process. The released target then triggers the next cycle to produce numerous HDP/HAP complexes [135]. In their work, Sang and co-workers [72] have proposed a method called target-catalyzed hairpin assembly amplification. Aggregation of
PDF
Album
Review
Published 31 Jan 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • micelles or vesicles. The driving forces of this assembly are a loss of entropy during the self-assembly and different interactions acting on the monomer units of the polymer. Whereas polymer/polymer interactions are favored for the hydrophobic block, interactions between the hydrophobic block and water
PDF
Album
Review
Published 15 Jan 2020

Magnetic segregation effect in liquid crystals doped with carbon nanotubes

  • Danil A. Petrov,
  • Pavel K. Skokov,
  • Alexander N. Zakhlevnykh and
  • Dmitriy V. Makarov

Beilstein J. Nanotechnol. 2019, 10, 1464–1474, doi:10.3762/bjnano.10.145

Graphical Abstract
  • interaction of the CNTs with the NLC molecules, and the last term is the contribution of the entropy of mixing an ideal gas of CNTs in the NLC. The volume fraction of CNTs in an NLC sample is assumed to be small (f ≪ 1), which makes it possible to neglect the interaction of the carbon nanotubes with each
PDF
Album
Full Research Paper
Published 22 Jul 2019

Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface

  • Robert Harbers,
  • Timo Heepenstrick,
  • Dmitrii F. Perepichka and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2019, 10, 1188–1199, doi:10.3762/bjnano.10.118

Graphical Abstract
  • fluctuations in the STM current when apparently void surface regions are scanned. The occurrence of a gas-type phase is indicative of only very small or even repulsive intermolecular interactions that cannot compensate the loss in entropy related to the condensation of the HTPEN into islands. The LEED pattern
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2019

Coexisting spin and Rabi oscillations at intermediate time regimes in electron transport through a photon cavity

  • Vidar Gudmundsson,
  • Hallmann Gestsson,
  • Nzar Rauf Abdullah,
  • Chi-Shung Tang,
  • Andrei Manolescu and
  • Valeriu Moldoveanu

Beilstein J. Nanotechnol. 2019, 10, 606–616, doi:10.3762/bjnano.10.61

Graphical Abstract
  • solution is effectively evaluated at all needed points in time using parallel methods for linear algebra operations in FORTRAN or CUDA [29]. The reduced density operator is used to calculate mean values of relevant physical quantities and the Réniy-2 entropy of the central system [31][32][33] The trace
  • initially empty central system. In addition, this figure shows the mean value of the z-component of the total spin of the electrons, the trace of the reduced density matrix and the Réniy-2 entropy of the central system S (Equation 9). Initially, the central system gains electric charge through the states in
  • the bias window. The plunger gate voltage is placed at Vg = 1.6 mV moving the one-electron ground state below the bias window. The steady state is reached when the ground state is fully occupied and the system is Coulomb blocked with no mean current flowing through it. The entropy of the central
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2019

Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion

  • Qianyi Cui,
  • Gangqiang Qin,
  • Weihua Wang,
  • Lixiang Sun,
  • Aijun Du and
  • Qiao Sun

Beilstein J. Nanotechnol. 2019, 10, 540–548, doi:10.3762/bjnano.10.55

Graphical Abstract
  • -point energy (ZPE) difference between the products and reactants in the reaction whose expression is similar to ΔE, where T represents the temperature (T = 298.15 K), and ΔS represents the change of entropy. The entropies of free gas molecules and vibrational frequencies were all obtained from the NIST
  • database [64], and the data of ZPE and entropy for the gas molecules at 298.15 K are shown in Table S1 in the Supporting Information File 1. ΔGU is the free energy of the electrode potential, which is ΔGU = −neU (n is the number of electrons transferred corresponding to the elementary steps and U is the
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Polymorphic self-assembly of pyrazine-based tectons at the solution–solid interface

  • Achintya Jana,
  • Puneet Mishra and
  • Neeladri Das

Beilstein J. Nanotechnol. 2019, 10, 494–499, doi:10.3762/bjnano.10.50

Graphical Abstract
  • proportional to the surface density of the molecules. This loss in entropy is compensated by enthalpic contributions from the intermolecular interactions and the molecule–substrate interaction. In the present system, slightly larger surface density for polymorph I and lesser hydrogen bonding sites make it less
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2019
Other Beilstein-Institut Open Science Activities