Search results

Search for "finite-difference time-domain (FDTD) method" in Full Text gives 10 result(s) in Beilstein Journal of Nanotechnology.

Orientation-dependent photonic bandgaps in gold-dust weevil scales and their titania bioreplicates

  • Norma Salvadores Farran,
  • Limin Wang,
  • Primoz Pirih and
  • Bodo D. Wilts

Beilstein J. Nanotechnol. 2025, 16, 1–10, doi:10.3762/bjnano.16.1

Graphical Abstract
  • -dimensional finite-difference time-domain (FDTD) method, using Ansys Lumerical 2024 R1 (Ansys Inc., Canonsburg, PA, USA). The diamond nanostructures were approximated via an idealized single diamond network approximated by triply periodic minimal surface model from its level-set equation [52]. Diamond
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2025

Coherent amplification of radiation from two phase-locked Josephson junction arrays

  • Mikhail A. Galin,
  • Vladimir M. Krasnov,
  • Ilya A. Shereshevsky,
  • Nadezhda K. Vdovicheva and
  • Vladislav V. Kurin

Beilstein J. Nanotechnol. 2022, 13, 1445–1457, doi:10.3762/bjnano.13.119

Graphical Abstract
  • are calculated by the finite-difference time-domain (FDTD) method [21], as described in [8][12][22]. We used the following junction parameters: Ic = 2.5 mA, normal resistance Rn = 0.1 Ω, and McCumber parameter β = 2. These parameters are consistent with experimental data for Nb/NbSi/Nb junctions
PDF
Album
Full Research Paper
Published 06 Dec 2022

Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration

  • Gyllion B. Loozen,
  • Arnica Karuna,
  • Mohammad M. R. Fanood,
  • Erik Schreuder and
  • Jacob Caro

Beilstein J. Nanotechnol. 2020, 11, 829–842, doi:10.3762/bjnano.11.68

Graphical Abstract
  • (the typical medium in our experiments) for various waveguide thicknesses using the 3D finite-difference time-domain (FDTD) method with Lumerical’s FDTD solutions [10]. We choose a waveguide width wexc of 1 μm, which is the minimum width for the contact lithography we use. We aim for single-mode
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • : dewetting; finite-difference time-domain (FDTD) method; plasmon resonance; silver (Ag) nanostructures; thin films; UV–vis absorption; Introduction In the last decade there has been significant development in sensor-related research regarding the application in optical, medical or biological areas [1][2][3
PDF
Album
Full Research Paper
Published 25 Mar 2020

Enhancement of X-ray emission from nanocolloidal gold suspensions under double-pulse excitation

  • Wei-Hung Hsu,
  • Frances Camille P. Masim,
  • Armandas Balčytis,
  • Hsin-Hui Huang,
  • Tetsu Yonezawa,
  • Aleksandr A. Kuchmizhak,
  • Saulius Juodkazis and
  • Koji Hatanaka

Beilstein J. Nanotechnol. 2018, 9, 2609–2617, doi:10.3762/bjnano.9.242

Graphical Abstract
  • simulated in the following using the finite-difference time-domain (FDTD) method (Lumerical). Figure 5 shows the light-intensity distributions around gold nanoparticles modeling different stages of excitation from initial gold nanoparticles towards the formation of ENZ plasma around them. The absorption
PDF
Album
Full Research Paper
Published 01 Oct 2018

Au–Si plasmonic platforms: synthesis, structure and FDTD simulations

  • Anna Gapska,
  • Marcin Łapiński,
  • Paweł Syty,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2018, 9, 2599–2608, doi:10.3762/bjnano.9.241

Graphical Abstract
  • . This sample was subsequently chosen for theoretical calculations. Simulations of electromagnetic field propagation through the produced samples were performed using the finite-difference time domain (FDTD) method. The calculated absorbance, as a result of the FDTD simulation shows a quite good
  • distributions, which could be helpful in identifying some structures in the investigated system (so called hot spots), responsible for light enhancement at some frequencies. This can be achieved by using numerical simulations. The method often used for this type of calculation is the finite-difference time
  • domain (FDTD) method. The method allows one to find the spatial distributions of all components of an electromagnetic field propagating through the investigated system, at selected time intervals. Applying in the next step the discrete Fourier transform (DFT) leads to a change from the time domain to the
PDF
Album
Full Research Paper
Published 28 Sep 2018

Near-field surface plasmon field enhancement induced by rippled surfaces

  • Mario D’Acunto,
  • Francesco Fuso,
  • Ruggero Micheletto,
  • Makoto Naruse,
  • Francesco Tantussi and
  • Maria Allegrini

Beilstein J. Nanotechnol. 2017, 8, 956–967, doi:10.3762/bjnano.8.97

Graphical Abstract
  • describe the roughness of scattering objects include the finite element method (FEM) [29], the finite difference time domain (FDTD) method [30], the coupled wave method (CWM) [31], the discrete dipole approximation (DDA) [32][33], for which the meshing of the rough surface may be critical for computation
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2017

Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement

  • Zheren Du,
  • Lianwei Chen,
  • Tsung-Sheng Kao,
  • Mengxue Wu and
  • Minghui Hong

Beilstein J. Nanotechnol. 2015, 6, 1199–1204, doi:10.3762/bjnano.6.122

Graphical Abstract
  • the finite-difference time-domain (FDTD) method with the Lumerical software for predicting the enhancement of the optical nonlinearity by the microspheres. The refractive index of the environment (water) was set at 1.33, while the refractive index of the silica microsphere was set at 1.51. It is
PDF
Album
Full Research Paper
Published 22 May 2015

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • -surrounding interface the finite-difference time-domain (FDTD) method represents a widely used tool. It allows for flexible modeling and effective problem solutions for isolated and simple particle systems, as well as for large particle populations and with interactions with the environment taken into account
PDF
Album
Review
Published 13 Nov 2014

Controlling the near-field excitation of nano-antennas with phase-change materials

  • Tsung Sheng Kao,
  • Yi Guo Chen and
  • Ming Hui Hong

Beilstein J. Nanotechnol. 2013, 4, 632–637, doi:10.3762/bjnano.4.70

Graphical Abstract
  • conducted by the finite-difference-time-domain (FDTD) method (FDTD Solutions 8.5, Lumerical Inc.) with realistic material parameters and Joule loss factors [16][17]. The simulation model was established and is shown in the schematic diagram Figure 1. This near-field energy controllable system consists of
PDF
Album
Full Research Paper
Published 09 Oct 2013
Other Beilstein-Institut Open Science Activities