Search results

Search for "flight performance" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Hymenoptera and biomimetic surfaces: insights and innovations

  • Vinicius Marques Lopez,
  • Carlo Polidori and
  • Rhainer Guillermo Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1333–1352, doi:10.3762/bjnano.15.107

Graphical Abstract
  • (body length 395 μm), where the reduced wing mass and specific wing movement patterns contribute to enhanced flight performance [115]. In the context of biomimetic applications, understanding and replicating these adaptations can lead to significant advancements of micro-aerial vehicles [103]. By
PDF
Album
Review
Published 05 Nov 2024

Functional fibrillar interfaces: Biological hair as inspiration across scales

  • Guillermo J. Amador,
  • Brett Klaassen van Oorschot,
  • Caiying Liao,
  • Jianing Wu and
  • Da Wei

Beilstein J. Nanotechnol. 2024, 15, 664–677, doi:10.3762/bjnano.15.55

Graphical Abstract
  • with slow flight and stall [84]. Indeed, when these hairs are removed, bats alter their flight performance by increasing speed and reducing their turning radius [85]. The membranous wings of insects are covered with bristle (or “hair”) sensilla that act as airflow sensors [86][87]. In Odonata wings
PDF
Album
Review
Published 06 Jun 2024

Biomimetics on the micro- and nanoscale – The 25th anniversary of the lotus effect

  • Matthias Mail,
  • Kerstin Koch,
  • Thomas Speck,
  • William M. Megill and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 850–856, doi:10.3762/bjnano.14.69

Graphical Abstract
  • densely covers both leaf surfaces, contributes to the plant's adaptation to severe environmental conditions in Antarctica by increasing its resistance to cold temperatures, icing, harmful UV radiation, and dehydration. In the paper “Micro-structures, nanomechanical properties and flight performance of
  • three beetles with different folding ratios”, Sun et al. [8] use modern, high-precision instruments to uncover the relationship between wing morphology and flight performance of three species of beetles. They use a high-speed camera to track flapping frequency, quantify the surface geometry of the wings
PDF
Album
Editorial
Published 03 Aug 2023

Micro-structures, nanomechanical properties and flight performance of three beetles with different folding ratios

  • Jiyu Sun,
  • Pengpeng Li,
  • Yongwei Yan,
  • Fa Song,
  • Nuo Xu and
  • Zhijun Zhang

Beilstein J. Nanotechnol. 2022, 13, 845–856, doi:10.3762/bjnano.13.75

Graphical Abstract
  • , microstructures and nanomechanical properties of three beetle species with different wing folding ratios living in different environments were investigated. Factors affecting their flight performance, that is, wind speed, folding ratio, aspect ratio, and flapping frequency, were examined using a wind tunnel. It
  • was found that the wing folding ratio correlated with the lift force of the beetles. Wind speed, folding ratio, aspect ratio, and flapping frequency had a combined effect on the flight performance of the beetles. The results will be helpful to design new deployable FWMAVs. Keywords: beetle hind wings
  • ; flight performance; folding ratio; nanoindentation; wind tunnel; Introduction Regarding the benefits of scientific research, rescue, surveying, mapping, and many other aspects in the development of micro aerial vehicles (MAVs), miniaturization of aircraft has become a popular research topic [1]. Owing
PDF
Album
Full Research Paper
Published 26 Aug 2022
Other Beilstein-Institut Open Science Activities