Search results

Search for "free-electron lasers" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
  • nanosecond laser pulses, resulting in a high- to low-spin transition accompanied by morphological deformations coupled with lattice dynamics. Femtosecond X-ray laser pulses from X-ray free-electron lasers (XFELs) have further revolutionized dynamic X-ray imaging. Coherent diffraction imaging (CDI) [68][69
PDF
Album
Review
Published 02 Jul 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • light sources, such as synchrotrons and free-electron lasers, allow researchers to probe the structural, electronic, and dynamic properties of functional materials at an unprecedented level of detail. Techniques like X-ray photoelectron spectroscopy and X-ray absorption spectroscopy, can reveal atomic
  • perspectives offered by the ultrahigh brilliance and ultrashort free-electron laser pulses for dynamic studies of the processes that take place upon photoexcitation are discussed. Keywords: cerium oxide; free-electron lasers; thin films; X-ray absorption spectroscopy; X-ray photoelectron spectroscopy
  • under operating conditions. Furthermore, free-electron lasers (FELs), with orders-of-magnitude higher peak brilliance than synchrotrons, have made it possible to achieve temporal resolution of the order of a few tens of femtoseconds, facilitating an ultrafast, element-sensitive characterization of the
PDF
Album
Review
Published 10 Jun 2025

Extended X-ray absorption fine structure of bimetallic nanoparticles

  • Carolin Antoniak

Beilstein J. Nanotechnol. 2011, 2, 237–251, doi:10.3762/bjnano.2.28

Graphical Abstract
  • bandpass (usually 0.1%). The increase in average brilliance of X-rays available from artificial sources, from the first X-ray tubes to synchrotron radiation sources of the third generation, is a remarkable factor of about 1013. For next generation free electron lasers an additional increase in the peak
PDF
Album
Review
Published 11 May 2011
Other Beilstein-Institut Open Science Activities