Search results

Search for "glioblastoma multiforme" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • , temozolomide (TMZ), a drug used for the treatment of anaplastic astrocytoma and glioblastoma multiforme (GBM), was incorporated into multiwalled carbon nanotubes (MWCNTs) and a MWCNTs–graphene (MWCNTs-G) hybrid compound, covalently functionalized with polyethylene glycol (PEG) 6000 and folic acid (FA), with an
  • nanostructures; cytotoxicity; glioblastoma multiforme; radiosensitizing properties; temozolomide; Introduction Carbon-based nanostructures (CNs) such as graphene and its derivatives, carbon nanotubes (CNTs), fullerenes, carbon quantum dots, carbon nanohorns and nanodiamonds (NDs), and their hybrids are becoming
  • glioblastomas. Glioblastoma multiforme (GBM), grade 4 astrocytoma, is the most aggressive and deadly brain tumor, representing 16% of primary brain cancers and up to 54% of all gliomas. The mean survival time estimate for patients with GBM is 14.6 months, the two-year and five-year survival rates are less than
PDF
Album
Full Research Paper
Published 19 Feb 2025

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • attention as an important problem of the modern era, encourages the discovery of new antimicrobial and antibacterial agents [6][7]. Glioblastoma multiforme (GBM, grade IV) with a low survival rate is the most commonly malignant and invasive tumor of the central nervous system and it is resistant to
  • conventional treatments. This resistance is mostly due to the blood–brain barrier, which is the most important obstacle to drug distribution. Since nanoparticles can penetrate through the blood–brain barrier, they are a preferred medicine in brain and nervous system diseases. In glioblastoma multiforme
  • used to investigate the specificity of nanoparticles to the glioblastoma multiforme cancer cells in the current study. ARPE19 cells as a part of the central nervous system were also used as the non-cancer cell (control). In addition, the antibacterial activity of the synthesized Ag NPs was tested
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Systematic studies into uniform synthetic protein nanoparticles

  • Nahal Habibi,
  • Ava Mauser,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2022, 13, 274–283, doi:10.3762/bjnano.13.22

Graphical Abstract
  • with glioblastoma multiforme [26]. Compared to methods mentioned above, EHD jetting also allows for the fabrication of multicompartmental protein particles [25]. Given the abundance of proteins and their importance in maintaining important biological functions, such as homeostasis, SPNPs based on
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2022

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
PDF
Album
Review
Published 29 Apr 2021

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • glioblastoma multiforme through systemic chemotherapy [150]. Following the good tolerance of the treatment, NanoBB-1-Dox will be investigated in a phase-II study, which might prove the ability of PLGA nanoparticles to cross the BBB in humans. Some other polymers have also been used to develop nanoparticles for
  • another study, arginine–glycine–aspartic acid peptide (RGD)-modified NLCs were used for the delivery of temozolomide (TMZ) and their efficacy was tested on a glioblastoma multiforme mouse model. The RGD-TMZ/NLCs displayed high antitumor efficacy in vivo, with an inhibition of the tumor four times higher
PDF
Album
Review
Published 04 Jun 2020
Other Beilstein-Institut Open Science Activities