Search results

Search for "hydrogels" in Full Text gives 58 result(s) in Beilstein Journal of Nanotechnology.

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • rich functional groups and surface dangling bonds, enables the effective loading of drugs, targeting molecules, and antibodies [15]. When combined with thermal/pH-sensitive materials, shape memory materials, and hydrogels, they form an efficient platform for photothermal therapy [16]. The efficient
  • release are crucial to enhancing drug utilization efficiency and positively impact patient compliance [129][130]. Hydrogels that exhibit reversible gel-to-sol transitions upon heating are emerging as promising materials for photothermal drug release [131]. The application of visible and NIR light locally
  • heats the photothermal nanomaterials embedded in these hydrogels, causing them to soften reversibly and release the encapsulated drug. The rate of drug release can be finely tuned by adjusting the concentration of the hydrogel and photothermal nanomaterial, as well as the irradiation conditions [132
PDF
Album
Review
Published 17 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties

  • Agnieszka Kreitschitz and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 1603–1618, doi:10.3762/bjnano.15.126

Graphical Abstract
  • The increasing interests in natural, biodegradable, non-toxic materials that can find application in diverse industry branches, for example, food, pharmacy, medicine, or materials engineering, has steered the attention of many scientists to plants, which are a known source of natural hydrogels
  • . Natural hydrogels share some features with synthetic hydrogels, but are more easy to obtain and recycle. One of the main sources of such hydrogels are mucilaginous seeds and fruits, which produce after hydration a gel-like, transparent capsule, the so-called mucilage envelope. Mucilage serves several
  • the mucilage envelope, primarily in the context of its structure and physical properties, as well as biological functions associated with these properties. Keywords: adhesion; cellulose; friction; hydrogel; mucilage envelope; seeds; Introduction The definition of hydrogels describes them as
PDF
Album
Review
Published 13 Dec 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
PDF
Album
Review
Published 22 Aug 2024

Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material

  • Veronika Pálos,
  • Krisztina S. Nagy,
  • Rita Pázmány,
  • Krisztina Juriga-Tóth,
  • Bálint Budavári,
  • Judit Domokos,
  • Dóra Szabó,
  • Ákos Zsembery and
  • Angela Jedlovszky-Hajdu

Beilstein J. Nanotechnol. 2024, 15, 781–796, doi:10.3762/bjnano.15.65

Graphical Abstract
  • observed no significant difference in the viability between the control (nontreated) and PASP-treated cells [74]. Furthermore, Juriga et al. found that MG-63 cells can proliferate on PASP-based hydrogels [75]. Like the tumor cells, 155BR human fibroblasts were also subjected to cytotoxicity assays (Figure
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Gold nanomakura: nanoarchitectonics and their photothermal response in association with carrageenan hydrogels

  • Nabojit Das,
  • Vikas,
  • Akash Kumar,
  • Sanjeev Soni and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 678–693, doi:10.3762/bjnano.15.56

Graphical Abstract
  • hydrogels is not well reported. In this study, nanomakura-shaped anisotropic gold nanoparticles (AuNMs) were synthesized via a surfactant-assisted seed-mediated protocol. Quaternary cationic surfactants having variable carbon tail length (n = 16, 14, 12) were used as capping for tuning the plasmon peak of
  • photothermal conversion was exclusively assigned to morphological features (i.e., nanoparticles of higher aspect ratio showed higher temperature change and vice versa irrespective of the surfactant used). To enable biofunctionality and stability, we used kappa-carrageenan- (k-CG) based hydrogels for
  • hydrogels for enabling usage on nanophotonic, photothermal, and bio-imaging applications. Keywords: anisotropy; hydrogel; kappa-carrageenan; metal nanoparticles; nanoarchitectonics; nanomakura; photothermal properties; surfactants; Introduction Nanoarchitectonics is the fabrication of functional material
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • is not an ideal method because it can be painful. In response, antioxidant nanomaterials coupled with hydrogels provide a promising method to topically deliver antioxidant nanomaterials into the body [154][155]. Nanoantioxidants (such as fullerene, cerium, gold, silver, and iron nanoparticles) and
  • hydrogels (such as gelatin methacryloyl, chitosan/polycaprolactone, polyvinyl alcohol/chitosan, and polypyrrole-grafted gelatin) were combined to generate diverse combinations of nanocomposites for wound repair [156][157][158][159][160][161]. This strategy not only endows nanoantioxidants with topical
PDF
Album
Review
Published 12 Apr 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • ; hydrogel; hydrogen; oxygen evolution reaction; polymer composites; Introduction Hydrogels are defined as a group of polymeric materials with an insoluble hydrophilic structure which gives them the ability to absorb and hold large amounts of water (up to over 99 wt %) in their three-dimensional network
  • . The phenomenon in which hydrogels swell in water while not dissolving in it is due to hydrophilic functional groups attached to the polymer backbone and cross-links between the network chains. High water content makes hydrogel materials similar in terms of microstructure and flexibility to living
  • ][2][3]. The methods of synthesising hydrogels are divided into two basic groups, including physical and chemical cross-linking. Physical cross-linking methods, which are mainly related to the synthesis of natural hydrogels, include changes in intermolecular interactions (e.g., hydrophobic
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Industrial perspectives for personalized microneedles

  • Remmi Danae Baker-Sediako,
  • Benjamin Richter,
  • Matthias Blaicher,
  • Michael Thiel and
  • Martin Hermatschweiler

Beilstein J. Nanotechnol. 2023, 14, 857–864, doi:10.3762/bjnano.14.70

Graphical Abstract
  • hydrogels infused with hyaluronic acid, salicylic acid, caffeine, various vitamins (B3, C, and E), and a blend of various peptides. Beyond cosmetic applications, microneedle patches are also being investigated for vaccine delivery. The most notable example of vaccine-loaded microneedles comes from the
PDF
Album
Perspective
Published 15 Aug 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • animal dermis and ensures its long-term applicability for actual solar steam generation [42]. In 2018, Yin et al. reported a poly(ethylene glycol) diacrylate (PEGDA) and PANI-based photothermal double-network hydrogel called p-PEGDA-PANI [35]. Porous PEGDA (p-PEGDA) hydrogels were obtained by a facile
  • solvent casting/particle leaching process. Then, the polymeric photothermal material PANI nanowires were cross-linked to the p-PEGDA hydrogels. This manufacturing process is simple, time-saving, and cost-effective (Figure 7a). The strong absorption capability of PANI was verified by its absorption
  • spectrum and UV–vis–NIR absorption spectra of the hydrogels. (Figure 7 was adapted with permission from [35], Copyright 2018 American Chemical Society). (a) Schematic illustration of the synthetic route to APDA. (b) UV–vis–NIR absorption spectra of APDA and PDA. (c) Absorption spectrum of the APDA–wood
PDF
Album
Review
Published 04 Apr 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • example, hydrogels and nanoparticles [38][39][40][41][42][43][44][45][46]. More recently, however, precisely designed CyD-based nanoarchitectures are primarily considered since more sophisticated and complicated functions are designable and accomplishable (Figure 1). The construction of sophisticated
  • cellulose chains were functionalized with β-CyD, and hydrogels were prepared by adding connector molecules bearing two arylazopyrazole groups at the ends [53]. Without photoirradiation, the arylazopyrazoles are stably accommodated in the cavities of β-CyD groups, and thus the gel is well crosslinked and
  • inclusion complexes with β-CyD. Figure 2 was reproduced from [50] (“Supramolecular hydrogels constructed by red-light-responsive host–guest interactions for photo-controlled protein release in deep tissue“ by D. Wang et al., © The Royal Society of Chemistry 2015, distributed under the terms of the Creative
PDF
Album
Review
Published 09 Feb 2023

Frequency-dependent nanomechanical profiling for medical diagnosis

  • Santiago D. Solares and
  • Alexander X. Cartagena-Rivera

Beilstein J. Nanotechnol. 2022, 13, 1483–1489, doi:10.3762/bjnano.13.122

Graphical Abstract
  • . Similar considerations exist for the development of soft wearable sensors or hydrogels for wound healing or drug delivery, among others. In all cases, it is of prime importance to create project teams with the appropriate make-up of expertise and within a well-designed strategy, such that ideas can be
PDF
Album
Perspective
Published 09 Dec 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • related to β-catenin signalling for the osteogenic process was confirmed by Western blot analysis [67]. Chitosan–copper nanocomposites Several research discoveries have proven the osteogenic properties of copper nanoparticles (CuNPs). Injectable hydrogels comprising copper with bioactive nanoparticles
  • fabrication of scaffolds for cartilage tissue engineering applications. The 2 cm × 2 cm PLGA electrospun nanofibers were prepared by electrospinning which incorporated those with hydroxybutyl chitosan hydrogels. The polycaprolactone scaffold was 3D printed and reinforced with hydrogel scaffolds to mimic the
PDF
Review
Published 29 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • /nanohydroxyapatite composite hydrogels have been studied regarding bone tissue engineering [124]. Spider silk has also been widely used as a multifunctional material for fishing nets, wound coverings, and sutures for surgery for centuries in Australasia and Greece [108]. Since then, it came in focus of researchers
  • coatings, recombinant spider silk proteins based on eADF4 can be processed into 3D scaffolds, such as foams or hydrogels due to their self-assembly properties [169][171][172][173][174]. Balb 3T3 fibroblasts adhered to porous foams made of eADF4(C16)-RGD and showed spreading and cell elongation along the
  • hydrogels, while they could not attach to unmodified eADF4(C16) hydrogels [174]. A previously published in vivo study of an arteriovenous loop model in rats showed that RGD-functionalized spider silk hydrogels significantly enhanced angiogenesis by forming new blood vessels compared to unmodified eADF4(C16
PDF
Album
Review
Published 08 Sep 2022

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • Information File 1, Figure S1). After culturing the cells on the substrates for 48 h, we measured the ability of the cells to migrate on the hydrogels for 24 h to ensure that the cells were in a stable state on the hydrogels (Figure 2a). We observed that the rate of cell migration on the hydrogel was
  • viability of cancer cells and can promote their migration and invasion. Morphological analysis showed different cellular characteristics in different substrates Differences in cell motility on hydrogels with different stiffness values are inevitably limited by the physical limitations of the hydrogel, which
  • most visually affects the morphology of the cells. When HPV-PZ-7 and PC-3 cells were cultured on hydrogels of different stiffness values for 48 h, we observed through the analysis of phase-contrast microscopy images that most cells on stiff substrates were elongated and had a higher degree of cell
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections

  • Sharif Abdelghany,
  • Walhan Alshaer,
  • Yazan Al Thaher,
  • Maram Al Fawares,
  • Amal G. Al-Bakri,
  • Saja Zuriekat and
  • Randa SH. Mansour

Beilstein J. Nanotechnol. 2022, 13, 517–527, doi:10.3762/bjnano.13.43

Graphical Abstract
  • mechanical properties, many studies have shown better mechanical properties of PVA/PVP hydrogels [39][40][41]. In one study, the tensile strength of PVA hydrogel was increased by 133% after blending with less than 2% w/w PVP [42]. This is due to the formation of relatively strong hydrogen bonds between the
PDF
Album
Full Research Paper
Published 15 Jun 2022

Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis

  • Camila Felix Vecchi,
  • Rafaela Said dos Santos,
  • Jéssica Bassi da Silva and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2022, 13, 503–516, doi:10.3762/bjnano.13.42

Graphical Abstract
  • , microneedles have been developed to cross the stratum corneum and enable the use of the transdermal route in different therapies [6]. Propolis (PRP) has already been studied in wound healing when incorporated in many vehicles, such as ointments, emulsions, hydrogels, films, or as hydroalcoholic or glycolic
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • cells. The incorporation of NPs loaded with bioactive agents in hydrogels has a tremendous impact on the properties and functionality of tissue-engineered scaffolds. In addition to providing sustained release properties, which is a major challenge in TE programs, the incorporation of NPs can improve the
  • study, silk fibroin/poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogels containing PLGA nanoparticles were used for the simultaneous delivery of bFGF and TGF-β1 to regenerate articular cartilage tissue [54]. The results showed that the simultaneous release of bFGF and TGFß1 improved the viability
  • hyaline cartilage [58]. In addition to providing a scaffold with controlled release properties, the incorporation of NPs eliminates the need for external and intermittent supplements used to develop nanocomposites and enhances the mechanical properties of hydrogels. The fabrication of a photopolymerized
PDF
Album
Review
Published 11 Apr 2022

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • properties [27] and good antibacterial activity [44]. Hydrogels of other amino acids modified by Fmoc, such as Fmoc-tryptophan, Fmoc-methionine, and Fmoc-tyrosine have also been shown to have antimicrobial activity and to be selectively resistant to Gram-positive bacteria [45]. The combined self-assembly
  • -phenylalanine (OTE-ᴅ-Phe), an amino-acid-modified conjugated oligomer [47]. Fmoc-ʟ-Phe/OTE-ᴅ-Phe formed yellow and transparent hydrogels through hydrogen bonding, van der Waals interactions, π–π interactions, and hydrophobic interactions, showing thicker and rougher nanofibers, which had obvious advantages in
  • bacteria and aztreonam-encapsulated Fomc-F hydrogels antagonize Pseudomonas aeruginosa and enhance Fomc-F antimicrobial activity. Salicylic acid is loaded in Fmoc-ʟ-phenylalanine hydrogel, which can play a role against Gram-positive bacteria, and the drug release behavior changes at different temperature
PDF
Album
Review
Published 12 Oct 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors. Keywords: smart nanomaterials; sonodynamic
PDF
Album
Review
Published 11 Aug 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • the design of various magnetic MNRs. Kim et al. [64] proposed a hydrogel microrobot based on the combination of an electroactive hydrogel and MNPs. Electroactive hydrogels are usually made of a single hydrogel [65]. They respond to electric fields and produce mechanical motion in an electrolyte [66
  • ]. Also, they respond more sensitively than other stimuli-responsive hydrogels [67]. The proposed microrobot had two arms, both of which were composed of anodic and cathodic electroactive hydrogels and MNPs. So they could be driven in a magnetic field and bent in an electric field to pick up and release
PDF
Album
Review
Published 19 Jul 2021

Straightforward synthesis of gold nanoparticles by adding water to an engineered small dendrimer

  • Sébastien Gottis,
  • Régis Laurent,
  • Vincent Collière and
  • Anne-Marie Caminade

Beilstein J. Nanotechnol. 2020, 11, 1110–1118, doi:10.3762/bjnano.11.95

Graphical Abstract
  • trimethylammonium chloride), used as a terminal function in dendrimers, can induce dendrimer solubility in water, allowing the colloidal stability of nanolatex covered by such a function and also the formation of structured hydrogels [43][44]. Hydrazine is a well-known reductant, which has been used for the seeded
PDF
Album
Supp Info
Letter
Published 28 Jul 2020

A 3D-polyphenylalanine network inside porous alumina: Synthesis and characterization of an inorganic–organic composite membrane

  • Jonathan Stott and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2020, 11, 938–951, doi:10.3762/bjnano.11.78

Graphical Abstract
  • well as the mechanisms of gel formation have been studied in detail. Hydrophilic gels with functional side groups enable stimuli-responsive hydrogels with interesting properties with regards to drug release systems. A drawback of these gels is their low mechanical stability, which can however be
  • deprotection of the side chain. This enables formation of pH-responsive hydrogels [28]. Stable, thermoresponsive organo-gels consisting of polybenzylglutamate-α-helices were studied by Niehoff et al. [29]. Gelated polybenzylglutamate molecules with molecular weight from approximately 7000 to 100 000 g/mol were
  • "crosslinking" due to branching and rejoining of fibrillar supramolecular aggregates occurs. Nevertheless "end-to-end" and "side-to-side" interactions of the pBzg-α-helices are essential for the formation of fibrillar networks. Supported hydrogels that were attached to a porous substrate have been reported by
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • approached, the morphological changes in PVP/PMA capsules were seen with the decrease in multilayer thickness due to disruption of hydrogen bonds [50]. When the same was cross-linked by carbodiimide chemistry, the swelling was observed at higher pH, leading to the formation of highly swollen hydrogels. To
  • between β-cyclodextrin monolayers as host and polymers modified with adamantyl groups as guests, which also resulted in stable multilayers [61]. The first stimuli-responsive supramolecular hydrogels films based on these reactions were built in 2006 using β-cyclodextrin and adamantyl modified chitosan
  • derivatives [62]. Photo-responsive and redox-responsive hydrogels of cyclodextrin with guest molecules of azobenzene and ferrocene have also been constructed [63]. Very few attempts have been made for fabrication of weak PE capsules under this category, as shown in Figure 3d [39]. Notably, the host and guest
PDF
Album
Review
Published 27 Mar 2020

Nanoarchitectonics: bottom-up creation of functional materials and systems

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2020, 11, 450–452, doi:10.3762/bjnano.11.36

Graphical Abstract
  • that were formed by metal-assisted chemical etching (MACE) [27], and the formation of high-tolerance crystalline hydrogels from cyclic dipeptides upon self-assembly [28]. In addition, a review on the use of DNA as the fundamental material building block for molecular and structural engineering [29
PDF
Album
Editorial
Published 12 Mar 2020
Other Beilstein-Institut Open Science Activities